Классификация материалов и конструкций по пожарной опасности.

Пожарная безопасность зданий и сооружений обеспечивается правильным выбором необходимой степени огнестойкости строительных конструкций; правильным объемно-планировочным решением зданий; устройством в зданиях соответствующих противопожарных преград, снижающих возможность перехода огня с одной части здания на другую; проектированием путей эвакуации, позволяющих быстро и безопасно эвакуировать людей из горящего здания; а также мерами, обеспечивающими успешное развертывание тактических действий по тушению пожара.

Основными показателями при оценке пожарной опасности жидкостей являются: группа горючести; температура вспышки; температура воспламенения и концентрационные пределы воспламенения. Основные показатели при оценке пожарной опасности твердых веществ и материалов - группа горючести; температура воспламенения, температура самовоспламенения, склонность к самовозгоранию.

Группа горючести . Вещества и материалы подразделяются по горючести на три группы: негорючие , т.е. неспособные к горению на воздухе обычного состава; трудногорючие , которые могут возгораться и гореть при наличии источника зажигания, но не способны самостоятельно гореть при его удалении; горючие , которые возгораются от источника зажигания и продолжают гореть при его удалении. Горючие материалы подразделяются в свою очередь, на легковоспламеняющиеся , т.е. такие, которые возгораются от источника зажигания незначительной энергии (спичка, искра и т.п.) без предварительного нагрева, и трудновоспламеняющиеся , которые возгораются только от сравнительно мощного источника зажигания.

Температура вспышки - самая низкая (в условиях специальных испытаний) температура горючего вещества, при которой над его поверхностью образуются пары и газы, способные вспыхивать в воздухе от источника зажигания, но скорость их образования еще недостаточна для последующего горения.

Термин "температура вспышки" обычно относится к горючим жидкостям, но некоторые твердые вещества (камфара, нафталин, фосфор и др.), испаряющиеся при нормальной температуре, также характеризуются температурой вспышки. Чем ниже температура вспышки горючей жидкости, тем большую опасность представляет она в пожарном отношении.

По правилу Орманди и Грэвена температура вспышки равна

t в =t кип К

где t кип - температура кипения, град. К

К - коэффициент, равный 0,736

По пожарной опасности в зависимости от температуры вспышки горючие жидкости делят на два класса:

1-й класс - легковоспламеняющиеся жидкости (ЛВЖ) - бензин, толуол, бензол, ацетон, метиловый и этиловый спирты, эфир, керосин, скипидар и др.; t в <61°C;



2-й класс - горючие жидкости (ГЖ) - минеральные масла, мазуты, формалин и др.; t в >61°C;

Температура воспламенения - это температура горючего вещества, при которой оно выделяет горючие пары и газы с такой скоростью, что после воспламенения их от источника зажигания возникает устойчивое горение.

Температура самовоспламенения - самая низкая температура вещества (материала, смеси), при которой резко увеличивается скорость экзотермических реакций, заканчивающихся горением с образованием пламени.

Температура самовоспламенения не является постоянной даже для одного и того же вещества. Она зависит от концентрации кислорода в воздухе, давления, условий теплоотдачи в окружающую среду и т.д. Например, температура самовоспламенения горючих газов и паров колеблется в пределах 300÷700 °С, дерева, торфа, бумаги, картона - 250÷400 °С, целлулоида - 140÷180 °С, винипласта - 580 °С, резины - 400 °С.

Концентрационные пределы воспламенения - минимальная и максимальная концентрации области воспламенения, т.е. области концентраций горючего вещества, внутри которой его смеси с данным окислителем (обычно воздухом) способны воспламеняться от источника зажигания с последующим распространением горения по смеси сколько угодно далеко от источника зажигания. Например, для ацетона нижний концентрационный предел воспламенения (взрыва) составляет 2,6%, а верхний - 12,2% (объемных), для бензина А-76 соответственно 0,76% и 5,03%, для этилового спирта - 3,3% и 18,4%, природного газа 5% и 16% и т.д.

Взрывоопасность горючих газов, паров и пыли тем больше, чем меньше нижний концентрационный предел воспламенения и чем больше разрыв между нижним и верхним пределами воспламенения. Таким образом, взрывоопасность прямо пропорциональна размеру области воспламенения.

Понятие пожарной опасности складывается не только из склонности вещества к горению как окислительному процессу, но и зависит от состояния внешней среды, в которой это вещество (материал, объект) находится. Пожарная опасность определяется не только способностью вещества воспламеняться, но и интенсивностью процесса горения и сопутствующих горению явлений (дымообразование, токсичность), а также, возможностью прекращения этого процесса. Для оценки степени пожарной опасности веществ необходимо знать количественные параметры процессов их горения. Однако при нахождении количественных параметров возникают определенные трудности, так как эти показатели не являются постоянными. Они зависят от природы горючего вещества, его агрегатного состояния, концентрации горючего и окислителя, температуры, условий тепловыделения и теплоотвода и т. д. В большинстве случаев на характеристики горения оказывают решающее влияние чисто физические процессы и явления: процессы массо- и теплопередачи, геометрия и пространственное расположение горючих объектов, аэродинамические условия, энергия источника зажигания, время его воздействия.

Перечисленные обстоятельства, которые оказывают влияние на параметры воспламенения и горения, являются причиной существования множества методов оценки пожарной опасности.

Пожарную опасность веществ нельзя охарактеризовать каким-то одним показателем, а только определённым набором, отражающим взрыво- и пожароопасность вещества на разных стадиях развития процесса горения. Число этих показателей зависит также от агрегатного состояния вещества. Поскольку все совокупности изменения и комбинаций внешних факторов учесть нельзя, то система оценки пожароопасных свойств, принятая в настоящее время, унифицирована именно по показателям, характеризующим свойства горючих материалов, окислительной среды и средств пожаротушения, определяемым в нормальных условиях. При иных условиях, например, при повышенных температурах, давлении и т. д., те же параметры пожарной опасности оцениваются дополнительно, учитывая в экспериментальных и расчётных методах заданные начальные условия. Практически любой из существующих методов оценки того или другого показателя пожарной опасности позволяет учитывать влияние только некоторых факторов на степень пожарной опасности, и поэтому методик его определения оказывается несколько. Примером служит определение концентрационных пределов воспламенения, температуры вспышки в приборах закрытого и открытого типа, различные способы нахождения температуры самовоспламенения и т. д. В других методиках оценивают показатели пожарной опасности независимо от реальных внешних условий (например, калориметрические измерения). Более полное представление о пожарной опасности могут дать натурные крупномасштабные испытания, но и они не отражают всего многообразия ситуаций, в которых может оказаться материал при воспламенении и горении.

Наиболее общим показателем пожарной опасности является горючесть материала или вещества, независимо от его агрегатного состояния. Согласно этому показателю, все материалы (вещества) можно разделить на три группы: негорючие, горючие и трудногорючие. Этот показатель характеризуется качественно и количественно. Качественная классификация основывается на способности к горению при воздействии источника зажигания и после его удаления.

Негорючими считаются вещества, неспособные гореть при последовательном нагревании вплоть до температуры 900 ºС. Тем не менее некоторые из них являются пожароопасными. Наиболее распространёнными группами негорючих, но пожароопасных веществ являются следующие:

§ окислители (перманганат калия, азотная кислота, кислород и т. д.);

§ вещества, реагирующие с водой (негашеная известь СаО );

§ вещества, при нагревании которых в закрытых объемах и сосудах происходит повышение давления, например, сжатые и сжиженные газы, а также термически не устойчивые вещества, которые при разложении выделяют газы;

§ вещества, выделяющие горючие газы при реакциях с водой (например, карбид кальция);

§ вещества, способные к взрывчатым превращениям без участия кислорода воздуха.

Трудногорючие вещества при нагревании способны воспламеняться при воздействии источника зажигания, но после его удаления самостоятельно не горят.

Горючие вещества способны самовоспламеняться, самовозгораться и самостоятельно гореть после удаления источника зажигания. Их разделяют на легко- и трудновоспламеняющиеся. Трудногорючие и горючие вещества имеют область воспламенения, характеризуются температурными показателями пожарной опасности, скоростью горения, для их тушения применяются огнетушащие вещества и т. д.

Число и вид показателей для оценки пожароопасных свойств трудногорючих и горючих веществ определяется в зависимости от их агрегатного состояния. У жидкостей и твердых веществ пожароопасных показателей больше, чем у газов. Эти дополнительные показатели, по существу, характеризуют процессы испарения и выделения летучих, а поэтому связаны с температурами при нагревании жидкостей и твердых веществ. Например, для воспламенения и устойчивого горения необходимо, чтобы поверхность жидкости в достаточном количестве «питала» пламя летучими продуктами, а скорость испарения жидкости связана с её температурой, поэтому вводят понятие температуры вспышки и воспламенения. То же относится и к твердым веществам. Вместе с тем для твердых и жидких трудногорючих и горючих веществ и материалов некоторые показатели, применяемые для газов, теряют смысл, так как не могут быть реализованы. Например, понятие верхнего концентрационного предела воспламенения неприменимо для жидкостей, находящихся в открытых резервуарах, твердых горючих − на открытом воздухе. В табл. 4.1 приведены показатели пожаро- и взрывоопасных свойств веществ, принятые в нашей стране. В основу классификации положен принцип деления материалов по агрегатному состоянию.

Для большинства горючих веществ в качестве критериев их пожаро- и взрывоопасных свойств выбирают характеристики, которые дают представление о безопасных условиях их эксплуатации, хранения, транспортировки.

Таблица 4.1

Показатели пожарной безопасности веществ и материалов

Показатели Агрегатное состояние вещества
газ жидкость твердое
Группа горючести + + +
Температура вспышки - + +
Температура воспламенения - + +
НКПВ + + +
ВКПВ + + -
ТПВ - + -
Температура самонагревания - - +
Температурные условия теплового самовозгорания - - +
Минимальная энергия зажигания + - + (пыли)
Кислородный индекс - + -
Скорость выгорания - - +
Коэффициент дымообразования + + +
Удельная скорость дымообразования + + +
Токсичность продуктов горения + + +
Минимальное взрывоопасное содержание кислорода + + +
Флегматизирующая концентрация + + +

Окончание табл. 4.1

Показатели взрывопожароопасности веществ и материалов могут быть определены экспериментальным или расчётным путем. В основу теоретических расчётных методов положены термодинамические параметры веществ: теплоты образования, сгорания, испарения, температуры кипения, а также константы химических реакций в пламени, характеристики диффузионных процессов и параметры теплопередачи. На практике использование перечисленных параметров в расчётных формулах ограничено в связи со сложностью их взаимосвязи с показателями пожарной опасности. Существующие эмпирические методы, как правило, учитывают физико-химические и термодинамические свойства веществ, но вводят упрощающие предложения, так как в большинстве случаев невозможно найти прямой взаимосвязи между этими свойствами и показателями пожарной опасности. Поэтому эмпирические методы не являются точными, а их корректность устанавливается путем сопоставления результатов расчета с данными прямых экспериментов. Так обстоит дело с расчётом концентрационных пределов воспламенения, температурой самовоспламенения, вспышки и т. д.

Расчётные методы определения показателей пожарной опасности позволяют значительно сократить объём эксперимента, выявить недостоверные величины в эксперименте, а также помогают в тех случаях, когда специалисты не располагают соответствующим лабораторным оборудованием.

Для оценки пожароопасных свойств веществ все показатели можно разделить на несколько групп, характеризующих различные этапы и стороны развития и прекращения горения.

Первая группа на основании расчёта или эксперимента решает вопрос о горючести: негорючее, трудногорючее или горючее вещество.

Вторая группа показателей характеризует способность вещества к самовоспламенению и зажиганию от внешних источников: температура самовоспламенения, вспышки, энергия зажигания, температурные условия самовозгорания, кислородный индекс, минимальное взрывоопасное содержание кислорода, значение концентрационных и температурных пределов горения (воспламенения), критический гасящий диаметр и т. д.

В третью группу входят показатели, характеризующие способность вещества к распространению пламени (скорость выгорания и скорость распространения пламени), и показатели, косвенно характеризующие процесс горения (коэффициент дымообразования, удельная скорость дымообразования, токсичность продуктов горения).

Четвертая группа показателей относится к средствам тушения: концентрация флегматизатора, минимальная концентрация средств объёмного тушения, характер взаимодействия с водопенными средствами тушения.

Процесс возникновения горения подразделяется на несколько видов.

Вспышка − быстрое сгорание горючей смеси, не сопровождающееся образованием сжатых газов.

Возгорание − возникновение горения под воздействием источника зажигания. Воспламенение − возгорание, сопровождающееся появлением пламени.

Самовозгорание − явление резкого увеличения скорости экзотермических реакций, приводящее к возникновению горения вещества при отсутствии источника зажигания. Различают несколько видов самовозгорания:

§ химическое – от воздействия на горючие вещества кислорода, воздуха, воды или взаимодействия веществ;

§ микробиологическое − происходит при определенной влажности и температуре в растительных продуктах (самовозгорание зерна);

§ тепловое − вследствие долговременного воздействия незначительных источников тепла.

Самовоспламенение − самовозгорание, сопровождается появлением пламени.

Взрыв − процесс чрезвычайно быстрого, под влиянием внешнего источника воспламенения, химического превращения вещества, сопровождающегося выделением газов и большого количества тепла, нагревающего эти газы до высокой температуры, в результате чего газы совершают работу.

Взрывная способность горючих газов, паров и пыли в воздухе сохраняется в определенных интервалах их концентраций. Существуют нижние и верхние концентрационные и температурные пределы распространения пламени.

Нижний (верхний) концентрационный предел распространения пламени (НКПРП) − минимальное (максимальное) содержание горючего вещества в однородной смеси с окислительной средой, при которой возможно распространение пламени по смеси на любое расстояние от источника зажигания. Невозможность воспламенения горючей смеси при концентрации ниже НКПРП объясняется малым количеством горючего вещества и избытком воздуха. Чем меньше коэффициент избытка воздуха, тем больше скорость горения и выше давление паров при взрыве. Верхний концентрационный предел распространения пламени характеризуется избытком горючего и малым количеством воздуха. Чем ниже нижний концентрационный предел и больше концентрационная область распространения пламени, тем большую пожарную опасность представляют горючие вещества.

В первом случае взрыв не происходит из-за недостатка горючего вещества, во втором − из-за недостатка воздуха (кислорода), необходимого для окисления горючего вещества.

Температура самовоспламенения − характеризует минимальную температуру вещества, при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся возникновением пламенного горения.

Температура вспышки ( )− наименьшая температура горючей жидкости, при которой в условиях специальных испытаний над её поверхностью образуются пары, способные вспыхнуть в воздухе при поднесении к ним внешнего источника зажигания (пламени или нагретого до высокой температуры тела). Устойчивое горение при этом не устанавливается вследствие малой скорости испарения горючей жидкости. Температура вспышки показывает, при какой температуре вещество подготовлено к воспламенению и становится огнеопасным в открытом сосуде.

В зависимости от температуры вспышки горючие жидкости подразделяются:

§ на легковоспламеняющиеся (ЛВЖ) с температурой вспышки не свыше 61 °С в закрытом тигле или не свыше 66 °С в открытом тигле;

§ горючие (ГЖ) с температурой вспышки паров выше 61 и 66 °С.

ЛВЖ, в свою очередь, делятся на три группы:

§ особо опасные ЛВЖ − имеющие температуру вспышки от – 18 °С и ниже в закрытом тигле или – 13 °С и ниже – в открытом;

§ постоянно опасные ЛВЖ − имеющие температуру вспышки от
–18 ° до +23 °С в закрытом тигле или от – 13 ° до +27 °С − в открытом;

§ опасные при повышенной температуре ЛВЖ. К данному разряду относятся жидкости с температурой вспышки от +23 ° до +61 °С включительно в закрытом тигле или от +27 ° до +66 °С − в открытом.

Температура воспламенения ( ) − наименьшая температура вещества, при которой в условиях специальных испытаний оно выделяет горючие пары и газы с такой скоростью, что при воздействии на них источника зажигания наблюдается способность воспламениться при поднесении внешнего источника воспламенения. Разница между температурой вспышки и воспламенения для ЛВЖ составляет 1−2 °С, для ГЖ −
до 10−15 °С и более.

Горение сопровождается выделением тепла, продуктов сгорания и свечением. Для устойчивого горения необходимо, чтобы теплообразование при этом процессе было больше теплоотдачи в окружающую среду. Если в результате горения образуются газы, то горение сопровождается пламенем.

Процесс воспламенения горючих газов и жидкостей без поднесения к ним открытого огня, а только под влиянием внешнего воздействия тепла называется самовоспламенением .

Температурные пределы воспламенения − температуры, при которых насыщенные пары вещества образуют в данной окислительной среде концентрации, равные соответственно нижнему и верхнему концентрационным пределам воспламенения жидкостей.

Горючие вещества могут быть в трёх агрегатных состояниях: жидком, твердом и газообразном . Большинство горючих веществ независимо от агрегатного состояния при нагревании образует газообразные продукты, которые при смешении с воздухом, содержащим определенное количество кислорода, образуют горючую среду. Горючая среда может образоваться при тонкодисперсном распылении твердых и жидких веществ. Из горючих газов и пыли образуются горючие смеси при любой температуре, в то время как твердые вещества и жидкости могут образовать горючие смеси только при определённых температурах.

В производственных условиях может иметь место образование смесей горючих газов или паров в любых количественных соотношениях. Однако взрывоопасными эти смеси могут быть только тогда, когда концентрация горючего газа или пара находится между границами воспламеняемых концентраций.

Минимальная концентрация горючих газов и паров в воздухе, при которой они способны загораться и распространять пламя, называется
нижним концентрационным пределом воспламенения (НКПВ).

Максимальная концентрация горючих газов и паров, при которой еще возможно распространение пламени, называется верхним концентрационным пределом воспламенения (ВКПВ).

Указанные пределы зависят от температуры газов и паров: так при увеличении температуры на 100 ºС величина нижних пределов воспламенения уменьшается на 8−10 %, верхних − увеличивается на 12−15 %.

Пожарная опасность вещества тем больше, чем ниже нижний и выше верхний пределы воспламенения и чем ниже температура самовоспламенения.

Контрольные вопросы

1. Чем определяются виды горения?

2. Как турбулентность газового потока влияет на процесс горения?

3. Какая величина используется в качестве количественной характеристики процесса горения твердых материалов?

4. Чем определяется критическое условие?

5. Каким образом определяется условие пожарной безопасности при тепловом самовозгорании?

6. Что такое температура вспышки?


Похожая информация.


Понятие пожарной опасности веществ и материалов складывается не только из собственно склонности веществ к горению как окислительному процессу, но и зависит от со­стояния внешней среды, в которой находятся эти веще­ства и материалы.

Пожарная опасность веществ определяется целым ря­дом таких параметров, как: способность воспламенятся, ин­тенсивность горения, дымообразование, токсичность про­дуктов сгорания, возможность прекращения горения. Для оценки степени пожарной опасности веществ необходимы также количественные параметры этих процессов.

Количественные параметры процесса горения не яв­ляются постоянными, так как во многом зависят от природы горючего вещества, его агрегатного состояния, от концен­трации окислителя и горючего вещества, температуры ок­ружающей среды и температуры источника зажигания, от условий тепловыделений и теплоотвода.

Пожарную опасность веществ нельзя охарактеризо­вать каким-то одним показателем. Только определенный набор параметров, отражающий взрывопожароопасность веществ на разных стадиях процесса горения, учитывающей агрегатное состояние горючего вещества, может позволить с определенной степенью точности дать оценку их пожар­ной опасности.

Совокупность химических и физических явлений по­жара, представляющих множество комбинаций, зависящих от внешних факторов, породила множество методик оценки ПВО веществ.

Существующая в настоящее время система оценки унифицирована только по показателям, характеризующим свойства горючих веществ и материалов, окислительной среды, средств пожаротушения и определенным в нормаль­ных условиях. При изменении условий, т. е. отличных от ис­пытательных (экспериментальных) температуры, давления и т. д., те же параметры ПВО должны оцениваться дополнительно с учетом этих изменений. При расчетных методах оценки показателей ПВО обязательно задаются начальные условия процесса.

Практически любой из существующих в настоящее время методов оценки того или иного показателя ПВО вещества позволяет учитывать влияние только некоторых факторов процесса горения.

Примером может служить определение области вос­пламенения (взрыва) паровоздушной смеси, температуры вспышки в приборах открытого и закрытого типа, различ­ные способы нахождения температуры самовоспламенения, которые оценивают показатели пожарной опасности неза­висимо от реальных внешних условий.

Даже крупномасштабные испытания на данной стадии развития науки и техники не могут учесть многообразия ситуаций реального пожара.

Наиболее общим показателем пожарной опасности является го­рючесть материала или вещества независимо от его агрегатного состояния. Согласно этому показателю все материалы (вещества) можно разделить на три группы: негорючие, горючие и трудного­рючие. Этот показатель характеризуется качественно и количест­венно. Качественная классификация основывается на способности к горению при воздействии ИЗ и после его уда­ления.

Негорючими (несгораемыми) считаются вещества, не способные к горению в воздухе. Тем не менее некоторые из них являются пожароопасными.

Наиболее распространенными группами негорючих, но пожаро­опасных веществ являются следующие:

Трудногорючие (трудносгораемые) вещества при нагревании способны воспламе­няться при воздействии ИЗ, но после его уда­ления самостоятельно не горят.

Горючие (сгораемые) вещества способны самовоспламеняться, самовозго­раться и самостоятельно гореть после удаления ИЗ. Потеря массы при горении 60 сек. превышает 20 %. Существует классификация на группы для горючих и трудногорючих веществ.

Трудногорючие и горючие вещества имеют область воспламе­нения, характеризуются температурными показателями пожарной опасности, скоростью горения, для их тушения применяются огнетушащие вещества и т. д. Число и вид показателей для оценки пожароопасных свойств трудногорючих и горючих веществ опре­деляется в зависимости от их агрегатного состояния. У жидкостей и твердых веществ пожароопасных показателей больше, чем у га­зов. Эти дополнительные показатели по существу характеризуют процессы испарения и выделения летучих соединений, а поэтому связаны с температурами при нагревании жидкостей и твердых веществ. На­пример, для воспламенения и устойчивого горения необходимо, чтобы поверхность жидкости в достаточном количестве «питала» пламя летучими продуктами, а скорость испарения жидкости была свя­зана с ее температурой, поэтому вводят понятия температуры вспышки и воспламенения. То же относится и к твердым веществам. Вместе с тем для твердых и жидких трудногорючих и горю­чих веществ и материалов некоторые показатели, применимые для газов, теряют смысл, так как не могут быть реализованы. Например, понятие верхнего концентрационного предела воспламенения неприменимо для жидкостей, находящихся в открытых резервуа­рах, твердых горючих – на открытом воздухе.

Для решения вопросов обеспечения безопасности технологических процессов, зданий и сооружений, а также обеспечения безопасности людей во время пожаров необходимо иметь данные о показателях ПВО веществ и средствах их тушения.

В настоящее время в России существует единая сис­тема оценки пожарной опасности (ГОСТ 12.1.044-89 Пожаро- и взрывоопасности веществ и материалов. Номенклату­ра показателей и методы их определения).

В основу классифика­ции показателей пожаро- и взрывоопасных свойств веществ и материалов положен принцип деления материалов по агрегатному состо­янию (см. табл. 6.1). Знак «+» обозначает применимость, а «-» неприменимость показателя для данного агрегатного состояния вещества.

Таблица 6.1.

Показатели ПВО веществ и материалов

Показатель

Агрегатное состояние вещества

жидкость

Группа горючести

Температура вспышки

Температура воспла­менения

Температура самовос­пламенения

Температура самона­гревания

Температура тления

Минимальная энергия зажигания

Кислородный индекс

Способность взрываться и гореть при взаимодействии с во­дой, кислородом воздуха и другими веществами

Нормальная скорость распространения пламени

Скорость выгорания

Коэффициент дымообразования

Удельная скорость дымообразования

Индекс распространения пламени

Токсичность продуктов горения

Минимальное взрывоопасное содержание кислорода

Минимальная флегматизирующая концентрация флегматизатора

Максимальное давле­ние взрыва

Скорость нарастания давления при взрыве

Для большинства горючих веществ в качестве крите­риев их взрывопожароопасных свойств выбирают характе­ристики, которые дают представление о безопасных усло­виях их эксплуатации, хранения, транспортировке. Экспе­риментальные методы оценки этих показателей не требуют для своего использования теоретических обоснований. Но расчетные методы строятся на выявлении, если это возмож­но, взаимосвязи термодинамических характеристик веществ и кинетики процесса горения с показателями пожарной опасности.

Пожаро- и взрывоопасность производств оценивается с помощью показателей пожаро- и взрывоопасное™ веществ, используемых в производственных процессах. С этой точки зрения основную опасность представляют горючие вещества, которые могут находиться в трех агрегатных состояниях: газообразном, жидком и твердом.
Газы образуют воспламеняющую смесь при смешении их в определенном количестве с воздухом. Жидкости и твердые вещества образуют воспламеняющиеся смеси, если они нагреты до температуры, при которой вследствие испарения или разложения в достаточном количестве образуются парогазообразные продукты. Витающая в воздухе пыль твердых веществ воспламеняемся при условии, что ее аэрозоль с определенной плотностью насыщает воздух.
Пожаро- и взрывоопасность веществ оценивается на основе сравнения вероятности их горения в равных условиях и для газов характеризуется следующими показателями: концентрационными пределами воспламенения, минимальной энергией зажигания, температурой горения и скоростью распространения пламени; для жидкостей, кроме того, температурой самовоспламенения, а для твердых веществ и пылей — дополнительно температурой самонагревания, способностью взрываться и гореть при взаимодействии с кислородом воздуха, водой и другими веществами.
Газовоздушные смеси воспламеняются только в определенном интервале концентраций горючего вещества, границы которого называются нижним и верхним концентрационными пределами воспламенения.
Нижний концентрационный предел воспламенения — наименьшая концентрация горючего газа (пыли), при которой смесь уже способна воспламеняться от источника зажигания и пламя распространяется на весь объем смеси.
Верхний концентрационный предел воспламенения — наибольшая концентрация горючего газа, при которой смесь еще способна воспламеняться от источника зажигания, а пламя распространяться па весь объем смеси.
Концентрационные пределы воспламенения зависят в основном от содержания инертных компонентов в смеси (диоксида углерода, азота и др.), а также от ее деления и температуры. При возрастании давления и температуры область воспламенения горючих смесей расширяется, при уменьшении — сужается.
Для расчета нижнего (НИ) и верхнего (ВП) пределов воспламенение индивидуальных горючих веществ можно использовать следующие эмпирические формулы (в % об.):

Где N—число молей — атомов кислорода, участвующих в сгорание 1 моля горючего.
Для сложной газовоздушной смеси известного состава пределы воспламенения можно подсчитать по формуле Ле-Шателье (в % об.):

Где П—предел воспламенения (нижний или верхний). % об: С1, С2, .... Сn — концентрация горючих компонентов в горючей смеси, С2+С3:+...+С=100% об.; П1, П2...Пn— соответствующие пределы воспламенения чистых компонентов смеси, %, об.
Минимальной энергией зажигания называется наименьшая величина энергии электрического разряда (мДж), которая достаточна для зажигания наиболее легковоспламеняемой смеси данного газа, пара или сы-
с воздухом.
Наиболее пожару- и взрывоопасными являются газы, имеющие широкую область воспламенения, низкий нижний концентрационный предел воспламенения, небольшую энергию зажигания, большую нормальную скорость распространения пламени.
Горение жидкостей — это горение паровоздушной фазы, образующейся над их поверхностью в результате испарения.
Температурой вспышки называется самая низкая (в условиях специальных испытаний) температура жидкости, при которой над ее поверхностью образуются пары или газы, способные вспыхивать от постороннего источника зажигания. Она является одним из основных параметров, определяющих их пожароопасность. После сгорания паровоздушной смеси горение прекращается, так как поверхность жидкости не прогревается до температуры, достал очной для ее дальнейшего быстрого испарения.
Температура окружающей среды, равная температуре вспышки, является тем пределом, при котором жидкость становится особо опасной в пожарном отношении. Ее величина служит критерием для классификации горючих жидкостей по степени их пожарной опасности. В зависимости от температуры вспышки паров жидкости разделяются на два класса:
I класс — легковоспламеняющиеся жидкости (ЛВЖ), т. е. жидкости, способные самостоятельно гореть после удаления источника зажигания и имеющие температуру вспышки паров в закрытом тигле не выше 61 или 66°С в открытом (этиловый спирт, эфиры, бензол и др.);
II класс — горючие жидкости (ГЖ), обладающие способностью горсть при температурах, превышающих указанные (смазочные масла, глицерин, масла растительные и др.).
Температура воспламенения — наиболее низкая температура, при которой жидкость выделяет горючие пары со скоростью, достаточной для продолжения устойчивого горения после воспламенения.
Температура самовоспламенения — наименьшая температура паров жидкости, при которой резко увеличивается скорость экзотермических реакций, приводящая к горению пламенем без постороннего источника теплоты.
По температуре самовоспламенения определяется группа взрывоопасной смеси, исходя из которой выбирается взрывозащищенное электрооборудование, температурные условия безопасного применения вещества; максимально допустимые температуры нагрева нетеплоизолированных поверхностей технологического, электрического и другого оборудования.
Для определения условий безопасного хранения веществ, обладающих способностью самовозгорания, а также для выбора оптимальных режимов их обработки важное значение имеет температура самонагревания, т. е. наименьшая температура, при которой в веществе, находящемся в атмосфере воздуха, возникают экзотермические процессы окисления, разложения и т. п.
Склонность к самовозгоранию характеризует способность ряда веществ и материалов самовозгораться и гореть при нагревании до сравнительно небольших температур или при контакте с другими веществами, а также при воздействии теплоты, выделяемой микроорганизмами в процессе их жизнедеятельности, например загорание недосушенного зерна при хранении. Различают тепловое, химическое и микробиологическое самовозгорание. Склонность к тепловому самовозгоранию характеризуют температурой самонагревания и тления, температурой среды, при которой наблюдается самовозгорание, а также объемом и условиями теплообмена с окружающей средой. Процесс теплового самовозгорания состоит из двух стадий: самонагревания и самовоспламенения, которому предшествует тление (беспламенное горение).
Самовозгорающие вещества по характеру возможных химических реакций можно подразделить на следующие группы: самовозгорающиеся при соприкосновении с воздухом, при контакте с водой, при смешивании или соприкосновении (несовместимые вещества), разлагающиеся под воздействием температуры, удара и трения.
К веществам, самовозгорающимся при соприкосновении с воздухом, относятся растительные масла, животные жиры и продукты, приготовленные на их основе или с их добавлением (подсолнечное масло, олифа, краски, лаки, протирочные составы и т. д.). Они окисляются кислородом воздуха при обычных или повышенных температурах.
К воспламеняющимся или вызывающим горение при соприкосновении с водой относятся следующие вещества: натрий, калий, карбиды кальция, негашеная известь и т. д.
Температура тления — наименьшая температура, при которой происходит увеличение скорости экзотермической реакции, заканчивающееся возникновением тления.
Пожаро- и взрывоопасными свойствами обладает также и пыль некоторых веществ, которая может находиться в производственных помещениях 8 состоянии аэрогеля и аэрозоля. Пожароопасные свойства пылей определяются температурой самовоспламенения и концентрационными пределами их воспламенения.
Воспламенение и взрыв органической пыли, взвешенной в воздухе, зависят от ее массовой концентрации, размера частиц, зольности, влажности, температуры воспламенения, характера и продолжительности действия источника нагревания. Особенно велика химическая активность аэрозолей мельнично-элеваторной, комбикормовой, сахарной, крахмальной промышленности и производства декстрина.
Различают две формы горения пыли: тление и горение пламенем. Обладая плохой теплопроводностью, пыль, осевшая на осветительных приборах, горячих трубопроводах, перегревается и начинает тлеть при температуре: пшеничная—290 °С, ржаная — 350 °С. При взметывании она может взорваться как обычный аэрозоль. Аэрозоль воспламеняется при температуре 430—450°С (ржаная пыль), 420—485°С (пшеничная пыль).
По пожаро- и взрывоопасности все пыли классифицируются следующим образом:
I класс (наиболее взрывоопасная)—с нижним концентрированным пределом взрыва 15 г/м3 (пыль пшеничных огрубей, мельничная серая пыль, сахарная пудра, крахмал, декстрин);
II класс (взрывоопасная)—с нижним концентрационным проделом 16—65 г/м3 (просяные и зерновые отходи, пшеничная сечка, ячменная мука, мучная пыль);
III класс (наиболее пожароопасная пыль)—с температурой самовоспламенении менее 250 °С (пыль зерноочистительных отделений);
IV класс (пожароопасная пыль)—с температурой воспламенения более 250 °С (элеваторная пыль).
Температура самовоспламенения аэрозоля значительно выше, чем у аэрогеля, и даже превышает температуру самовоспламенения паров и сазов, так как концентрация горючего вещества в единице объема аэрозоля в сотни раз меньше, чем у аэрогеля. Для пылей обычно определяется только нижний концентрационный предел, так как верхний концентрационный предел (ВКПВ) никогда не достигается. Так, например, верхний концентрационный предел воспламенения сахарной пыли 13500 г/м3.
Нижний концентрационный предел воспламенения одной и той же пыли в значительной мере зависит от ее дисперсности, зольности и влажности. Зависимость НКПВ от дисперсности объясняется тем, что у тонко-дисперсных материалов большая поверхность контакта с окислителем (кислородом воздуха).
Степень пожарной опасности любого технологического процесса прежде всего определяется огнеопасными свойствами при.мен немых веществ в производстве.
Несмотря на многообразие технологических процессов, пищевые производства в целом имеют ряд следующих общих особенностей, характеризующих пожарную опасность:

  • на пищевых предприятиях используются, перерабатываются и вырабатываются горючие и взрывоопасные органические вещества в различном агрегатном состоянии: спирт, эсенсии, жиры, масла, зерно, сахар) и др. Отдельные производства (хлебозаводы, кондитерские предприятии, сахарные заводы п др.) связаны с горючими взрывоопасными пылями: мучной, сахарной, какао, крахмальной и т. п.;
  • на предприятиях широко используются холодильные установки, необходимые по условиям технологии и сохранности пищевых продуктов. В качестве хладагента чаще всего в холодильных установках применяется аммиак, который является взрывоопасным, токсичным газом. Таким образом, на пищевых предприятиях помещения аммиачных компрессорных и холодильных камер с непосредственным охлаждением представляет значительную пожарную опасность;
  • на пищевых предприятиях вырабатывается и применяется.огромное количество горючей тары: деревянные, фанерные и картонные ящики; тканевые и бумажные мешки; бумажные пакеты; этикетки и т. п. Наличие горючей тары усугубляет пожарную опасность предприятий;
  • для многих технологических процессов нагрева, сушки, обжарки, варки, выпечки применяются нагревательные огневые установки. Эксплуатация теплогенерирующих установок при нарушении технологических режимов и противопожарных требований может явиться причиной возникновения пожаров.

Учитывая важность и повышенную пожарную опасность объектов пищевых производств, охране их от пожаров должно уделяться серьезное внимание.

Горение - это интенсивные химические окислительные реакции, которые сопровождаются выделением теплоты и свечением .

Горение может возникнуть только при одновременном наличии трех условий: присутствии горючего вещества, окислителя и источника (импульса) воспламенения.

Горючие вещества - любые органические вещества и материалы, большинство металлом в свободном виде, многие минералы, сера, оксид углерода, водород, фосфор и т.д.

В качестве окислителя может быть не только кислород, но и многие химические соединения - бертолетова соль, перхлораты, нитросоединения, пероксид натрия, азотная кислота, хлор, озон и др.

Импульсами воспламенения могут быть открытые, или светящиеся источники - пламя, раскаленные поверхности, лучистая энергия, искры, а также скрытые (несветящиеся) - трение, удар, адиабетическое сжатие, экзотермическая реакция и т.д. Например, температура пламени спички составляет 750-860єС, тления сигареты - 700-750, пламени древесной лучины - 850-1000єС.

В некоторых случаях при горении кондексированных систем (твердых, жидких веществ или их смесей) пламя может и не возникать, т.е. происходит беспламенное горение, или тление.

Для того чтобы прервать горение, необходимо нарушить условия его возникновения и поддержания.

Пожаровзрывоопасность веществ и материалов - совокупность свойств, характеризующих их способность к возникновению и распространению горения. Следствием горения, в зависимости от его скорости и условий протекания, может быть пожар (диффузионное горение) или взрыв (дефлаграционное горение предварительно перемешенной смести горючего с окислителем).

Пожаровзрывоопасность веществ и материалов определяется показателями, выбор которых зависит от агрегатного состояния вещества (материала) и условий его применения.

При определении пожаровзрывоопасности веществ и материалов различают:

· газы - вещества, давление насыщенных паров которых при температуре 25 єС и давлении 101,3 кПа превышает 101,3 кПа;

· жидкости - вещества, давление насыщенных паров которых при температуре 25єС и давлении 101,3 кПа меньше 101,3 кПа. К жидкостям относят также твердые плавящиеся вещества, температура плавления и каплепадения которых меньше 50єС;

· твердые вещества и материалы - индивидуальные вещества и их смесевые композиции с температурой плавления или каплепадения больше 50єС, а также вещества, не имеющие температуры плавления (например, древесина, ткани и т.п.);

· пыли - диспергированные твердые вещества и материалы с размером частиц менее 850 мкм.

Показатели пожаровзрывоопасности веществ и материалов выбираются в зависимости от агрегатного состояния.

Опишем некоторые из них.

Группа горючести является классификационной характеристикой способности веществ и материалов к горючести.

По горючести вещества и материалы подразделяются на три группы:

· негорючие (несгораемые) - вещества и материалы, не способные к горению в воздухе. Они могут быть пожаровзрывоопасными, например, окислители или вещества, выделяющие горючие продукты при взаимодействии с водой, кислородом воздуха или друг с другом;

· трудногорючие (трудносгораемые) - вещества и материалы, способные гореть в воздухе при воздействии источника зажигания, но не способные самостоятельно гореть после его удаления;

· горючие (сгораемые) - вещества и материалы, способные возгораться, а также возгораться при воздействии источника зажигания и самостоятельно гореть после его удаления.

Из группы горючих веществ и материалов выделяют легковоспламеняющие, которые способны воспламеняться от кратковременного (до 30 с) воздействия источника зажигания с низкой энергией (пламя спички, искра, тлеющая сигарета и т.п.).

Концентрационные пределы распространения пламени нижние или верхние - это минимальное или максимальное содержание горючего вещества в однородной окиси с окислительной средой, при котором возможно распространение пламени по смеси на любое расстояние от источника зажигания.

Интервал между нижним и верхним концентрационными пределами называется областью воспламенения.

Величины пределов воспламенения используют при расчете допустимых концентраций внутри технологических аппаратов, систем вентиляции, а также при определении предельно допустимой взрывоопасной концентрации паров и газов при работе с применением искрящего инструмента.

В зависимости от численного значения температуры вспышки жидкости подразделяются на легковоспламеняющиеся (ЛВЖ) и горючие (ГЖ).

К легковоспламеняющимся относятся жидкости с температурой вспышки не более 61-66єС. Для ЛВЖ температура воспламенения обычно на 1-5єС выше температуры вспышки, а для горючих жидкостей эта разница может достигать 30-35єС.

В зависимости от температуры вспышки ЛВЖ подразделяются на три разряда.

Особо опасные ЛВЖ - с температурой вспышки от -18 до -13єС. К особо опасным ЛВЖ относятся ацетон, диэтиловый спирт и др.

К постоянно опасным ЛВЖ относятся бензил, этиловый спирт, этилацетат и др.

К опасным при повышенной температуре ЛВЖ относятся хлорбензол, скипидар и др.

Температурой воспламенения называется наименьшее значение температуры жидкости, при котором интенсивность испарения ее такова, что после зажигания внешним источником возникает самостоятельное пламенное горение.

Температура самовоспламенения - самая низкая температура вещества, при которой в условиях специальных испытаний происходит резкое увеличение скорости экзотерических реакций, заканчивающихся горением.

Склонность к взрыву - чувствительность к механическому воздействию (удару или трению).

Для оценки взрывоопасности газо- и паровоздушных смесей используют понятие критического зазора (диаметра).

С критическим диаметром (зазором) связано также определение категории взрывоопасной смеси, которая характеризует способность газопаровоздушной смеси передать взрыв через узкие щели и зазоры.

Взрывоопасные смеси газов и паров подразделяются на категории взрывоопасности в зависимости от величины безопасного экспериментального максимального зазора и значения соотношения минимального тока воспламенения испытуемого газа или пара к минимальному току воспламенения метана .