Находящееся агрегатном состоянии, которому свойственно иметь газообразную или жидкую форму при комнатной температуре. Свойства льда начали изучать сотни лет назад. Около двухсот лет тому назад ученые обнаружили, что вода - не простое соединение, а сложный химический элемент, состоящий из кислорода и водорода. После открытия формула воды стала иметь вид Н 2 О.

Строение льда

Н 2 О состоит из двух атомов водорода и одного атома кислорода. В спокойном состоянии водород располагается на вершинах атома кислорода. Ионы кислорода и водорода должны занимать вершины равнобедренного треугольника: кислород располагается на вершине прямого угла. Такое строение воды называется диполем.

Лед состоит на 11.2% процента из водорода, а остальное - это кислород. Свойства льда зависят от его химического строения. Иногда в нем присутствуют газообразные или механические образования - примеси.

Лед встречается в природе в виде немногочисленных кристаллических видов, которые устойчиво сохраняют свое строение при температурах от нуля и ниже, но при нуле и выше он начинает плавиться.

Структура кристаллов

Свойства льда, снега и пара совершенно разные и зависят от В твердом состоянии Н 2 О находится в окружении четырех молекул, расположенных в углах тетраэдра. Так как координационная численность низкая, то лед может иметь ажурную структуру. Это отображается на свойствах льда и его плотности.

Формы льда

Лед относится к распространенным в природе веществам. На Земле есть следующие его разновидности:

  • речной;
  • озерный;
  • морской;
  • фирновый;
  • глетчерный;
  • грунтовый.

Есть лед, напрямую образующийся сублимационным путем, т.е. от парообразного состояния. Такой вид принимает скелетовидную форму (мы их называем снежинки) и агрегатов дендритного и скелетного роста (изморозь, иней).

Одной из самых распространенных форм являются сталактиты, т. е. сосульки. Они растут по всему миру: на поверхности Земли, в пещерах. Этот вид льда образуется путем стекания капель воды при разнице температур около нуля градусов в осенне-весенний период.

Образования в виде ледяных полос, появляющихся по краям водоемов, на границе воды и воздуха, а также по краю луж, называются ледяными заберегами.

Лед может образовываться в пористых грунтах в виде волокнистых прожилок.

Свойства льда

Вещество может находиться в разных состояниях. Исходя из этого, возникает вопрос: а какое свойство льда проявляется в том или ином состоянии?

Ученые выделяют физические и механические свойства. Каждое из них имеет свои особенности.

Физические свойства

К физическим свойствам льда относят:

  1. Плотность. В физике неоднородная среда представлена пределом отношения массы вещества самой среды к объему, в котором она заключена. Плотность воды, как и других веществ, является функцией температур и давления. Обычно в расчетах используют постоянную плотность воды, равную 1000 кг/м 3 . Более точный показатель плотности учитывается только тогда, когда необходимо очень точно провести расчеты ввиду важности получаемого результата разности плотностей.
    При проведении расчетов плотности льда учитывается, какая вода стала льдом: как известно, плотность соленой воды выше, чем дистиллированной.
  2. Температура воды. Обычно происходит при температуре ноль градусов. Процессы замерзания происходят скачками с выделением теплоты. Обратный процесс (таяние) происходит при поглощении того же количества тепла, которое было выделено, но без скачков, а постепенно.
    В природе встречаются условия, при которых происходит переохлаждение воды, но она не замерзает. Некоторые реки сохраняют жидкое состояние воды даже при температуре -2 градуса.
  3. количество теплоты, которое поглощается при нагревании тела на каждый градус. Есть удельная теплоемкость, которая характеризуется количеством теплоты, необходимой для нагрева килограмма дистиллированной воды на один градус.
  4. Сжимаемость. Еще одно физическое свойство снега и льда - сжимаемость, влияющая на уменьшение объема под воздействием повышенного внешнего давления. Обратная величина называется упругостью.
  5. Прочность льда.
  6. Цвет льда. Это свойство зависит от поглощения света и рассеивания лучей, а также от количества примесей в замерзшей воде. Речной и озерный лед без посторонних примесей виден в нежно-голубом свете. Морской лед может быть совершенно другим: голубым, зеленым, синим, белым, коричневым, иметь стальной оттенок. Иногда можно увидеть черный лед. Такой цвет он приобретает из-за большого количества минералов и различных органических примесей.

Механические свойства льда

Механические свойства льда и воды определяются сопротивлением воздействию внешней среды по отношению к единице площади. Механические свойства зависят от структуры, солености, температуры и пористости.

Лед - это упругое, вязкое, пластичное образование, но бывают условия, при которых он становится твердым и очень хрупким.

Морской лед и пресноводный различаются: первый намного пластичнее и менее прочный.

При прохождении кораблей обязательно учитываются механические свойства льда. Также это важно при использовании ледяных дорог, переправ и не только.

Вода, снег и лед обладают схожими свойствами, которые определяют характеристики вещества. Но в то же время на эти показания влияют и многие другие факторы: температура окружающей среды, примеси в твердом веществе, а также исходный состав жидкости. Лед - это одно из самых интересных веществ на Земле.

К. х.н.

СОВРЕМЕННАЯ МОДЕЛЬ ВОДЫ

Если совершить краткий экскурс в школьный курс химии мы вспомним, что две электронные пары образуют полярные ковалентные связи между атомами водорода и кислорода, а оставшиеся две электронные пары остаются свободными и называются неподеленными . Молекула воды имеет угловое строение, угол Н–О–Н составляет 104,5 градусов.

Рис. Молекула воды

Поскольку у атома кислорода больше электронов (химики говорят, что атом кислорода более электроотрицательный), чем у атома водорода, электроны двух атомов водорода сдвигаются в сторону более электроотрицательного атома кислорода, приводя к тому, что два положительных заряда атомов водорода компенсируются равным по величине двум атомов водорода отрицательным зарядом атома кислорода. Поэтому электронное облако имеет неоднородную плотность. Около ядер водорода имеется недостаток электронной плотности, а на противоположной стороне молекулы, около ядра кислорода, наблюдается избыток электронной плотности. Это приводит к тому, что молекула воды представляет собой маленький диполь, содержащий положительный и отрицательный заряды на полюсах. Именно такая структура и определяет полярность молекулы воды. Если соединить прямыми линиями эпицентры положительных и отрицательных зарядов получится объемная геометрическая фигура - правильный тетраэдр. Но такой тетраэдр – это только самый первый базовый уровень строения воды.

Рис. Структура молекулы воды: а) угловая; б) шаровая; в) тетраэдрическая

Второй уровень химической организации воды определяется возможностью тетраэдров воды образовывать особые связи, названные водородными связями, которые связывают отдельные молекулы друг с другом в ассоциаты.


Водородная связь имеет глобальное значение в химии межмолекулярных взаимодействий и обусловлена в основном слабыми электростатическими силами и воздействиями. Она возникает при взаимодействии обедненного электронами атома водорода одной молекулы воды с неподеленной электронной парой атома кислорода соседней молекулы воды.

https://pandia.ru/text/78/208/images/image004_14.jpg" width="487" height="385">

Рис. Каждая молекула воды способно образовывать водородные связи с четырьмя соседними молекулами

В кристаллической структуре льда каждая молекула участвует в 4 водородных связях, направленных к вершинам тетраэдра. В центре этого тетраэдра находится атом кислорода, в двух вершинах - по атому водорода, электроны которых задействованы в образовании ковалентной связи с кислородом. Две оставшиеся вершины занимают пары валентных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей.

Рис . Водородные связи в кристаллической решётке льда

В отличие от льда, в жидкой воде водородные связи легко разрушаются и быстро восстанавливаются, что делает структуру воды исключительно изменчивой. Именно благодаря этим связям в отдельных микрообъемах воды непрерывно возникают своеобразные ассоциаты воды - её структурные элементы. Всё это приводит к неоднородности в структуре воды.

Первым идею о том, что вода неоднородна по своей структуре, высказал Уайтинг в 1884 году. Его авторство цитирует в монографии “Природа воды. Тяжёлая вода”, изданной в 1935 году. После неё появилось множество работ, в которых воду рассматривали как смесь ассоциатов разного состава (“гидролей”).

Когда в 20-е годы определили структуру льда, оказалось, что молекулы воды в кристаллическом состоянии образуют трёхмерную непрерывную сетку, в которой каждая молекула имеет четырёх ближайших соседей, расположенных в вершинах правильного тетраэдра. В 1933 году Дж. Бернал и П. Фаулер предположили, что подобная сетка существует и в жидкой воде. Поскольку вода плотнее льда, они считали, что молекулы в ней расположены не так, как во льду, то есть подобно атомам кремния в минерале тридимите , а так, как атомы кремния в более плотной модификации кремнезёма - кварце. Увеличение плотности воды при нагревании от 0 до 4°C объяснялось присутствием при низкой температуре тридимитовой компоненты. Таким образом, модель Бернала - Фаулера сохранила элемент двухструктурности, но главное их достижение - идея непрерывной тетраэдрической сетки. Тогда появился знаменитый афоризм И. Ленгмюра: „Океан - одна большая молекула“.


Только в 1951 году Дж. Попл создал модель непрерывной сетки , которая была не так конкретна, как модель Бернала - Фаулера. Попл представлял воду как случайную тетраэдрическую сетку, связи между молекулами в которой искривлены и имеют различную длину. Модель Попла объясняет уплотнение воды при плавлении искривлением связей. Когда в 60–70-е годы появились первые определения структуры льдов II и IX, стало ясно, как искривление связей может приводить к уплотнению структуры. Модель Попла не могла объяснить немонотонность зависимости свойств воды от температуры и давления так хорошо, как модели двух состояний. Поэтому идею двух состояний ещё долго разделяли многие учёные.

Рис. Модель непрерывной сетки

Во второй половине XX века помимо „континуальных “ моделей (модель Попла), возникли две группы „смешанных“ моделей: кластерные и клатратны е. В первой группе вода представала в виде кластеров из молекул, связанных водородными связями, которые плавали в море молекул, в таких связях не участвующих. Модели второй группы рассматривали воду как непрерывную сетку водородных связей - каркас, которая содержит пустоты; в них размещаются молекулы, не образующие связей с молекулами каркаса.

Среди кластерных моделей наиболее яркой оказалась модель Г. Немети и Х. Шераги, предложенные ими картинки, изображающие кластеры связанных молекул, которые плавают в море несвязанных молекул, вошли во множество монографий.

Другая модель воды, предложенная в 1957 г. Фрэком и Уэном – модель мерцающих кластеров. Эта модель очень близка современным представлениям о структуре воды. В этой модели водородные связи в воде непрерывно образуются и рвутся, причем эти процессы протекают кооперативно в пределах короткоживущих групп молекул воды, названных “мерцающими кластерами”. Их время жизни оценивают в диапазоне от 10-10 до 10-11 с. Такое представление правдоподобно объясняет высокую степень подвижности жидкой воды и ее низкую вязкость. Считается, что благодаря именно таким свойствам вода служит одним из самых универсальных растворителей.

DIV_ADBLOCK567">


В 2002 году группе д-ра Хэд-Гордона методом рентгеноструктурного анализа с помощью сверхмощного рентгеновского источника Advanced Light Source (ALS) удалось показать, что молекулы воды способны за счет водородных связей образовывать структуры - "истинные кирпичики" воды, представляющие собой топологические цепочки и кольца из множества молекул воды. Интерпретируя полученные экспериментальные данные, исследователи считают их довольно долгоживущими элементами структуры. В основном же вода – это совокупность беспорядочных полимеров и гипотетических «водяных кристаллов» (которые, как предполагаются существуют в талой воде), где количество связанных в водородные связи молекул может достигать сотен и даже тысяч единиц.

«Водяные кристаллы» могут иметь самую разную форму, как пространственную, так и двухмерную (в виде кольцевых структур). В основе же всего лежит тетраэдр. Именно такую форму имеет молекула воды. Группируясь, тетраэдры молекул воды образуют разнообразные пространственные и плоскостные структуры. И из всего многообразия структур в природе базовой является гексагональная (шестигранная) структура, когда шесть молекул воды (тетраэдров) объединяются в кольцо. Такой тип структуры характерен для льда, снега и талой воды.

Рис. 1. Кристаллическая структура льда

Когда лёд плавится, его тетрагональная структура разрушается и образуется смесь кластеров, состоящая из три-, тетра-, пента-, и гексамеров воды и свободных молекул воды. Схематически этот процесс можно представить себе так.

Рис . Структура жидкой воды. В воде кластеры периодически разрушаются и образуются снова. Время перескока составляет 10-12 секунд.

Изучить строение этих образующихся ассоциатов оказалось довольно сложно, поскольку вода – смесь различных полимеров, которые находятся в равновесии между собой. Сталкиваясь друг с другом, полимеры переходят один в другой, разлагаются и вновь образуются.

Разделить эту смесь на отдельные компоненты тоже практически невозможно. Лишь в 1993 году группа исследователей из Калифорнийского университета (г. Беркли, США) под руководством доктора Р. Дж. Сайкалли расшифровала строение триммера воды, в 1996 г. – тетрамера и пентамера, а затем и гексамера воды. К этому времени уже было установлено, что жидкая вода состоит из полимерных ассоциатов (кластеров), содержащих от трех до шести молекул воды.

Более сложным оказалось строение гексамера. Самая простая структура – шесть молекул воды в вершинах шестиугольника, – как выяснилось, не столь прочна, как структура клетки. Более того, структуры призмы, раскрытой книги или лодки тоже оказались менее устойчивыми. В шестиугольнике может быть только шесть водородных связей, а экспериментальные данные говорят о наличии восьми. Это значит, что четыре молекулы воды связаны перекрёстными водородными связями.

Структуры кластеров воды были найдены и теоретически, сегодняшняя вычислительная техника позволяет это сделать. В 1999 г. Станислав Зенин провёл совместно с Б. Полануэром (сейчас в США) исследование воды в ГНИИ генетики, которые дали интереснейшие результаты. Применив современные методы анализа - рефрактометрию, протонный резонанс и жидкостную хроматографию им удалось обнаружить ассоциаты молекул воды - кластеры.


Ри с. Возможные кластеры воды

Объединяясь друг с другом, кластеры могут образовывать более сложные структуры:

https://pandia.ru/text/78/208/images/image016_2.gif" width="200" height="520 src=">

Рис. Формирование кластера из 20 молекулы воды.

Анализируя полученные данные предложил, что вода представляет собой иерархию правильных объемных структур "ассоциатов" (clathrates), в основе которых лежит кристаллоподобный "квант воды", состоящий из 57 ее молекул, которые взаимодействуют друг с другом за счет свободных водородных связей. При этом 57 молекул воды (квантов), образуют структуру, напоминающую тетраэдр. Тетраэдр в свою очередь состоит из 4 додекаэдров (правильных 12-гранников). 16 квантов образуют структурный элемент, состоящий из 912 молекул воды. Вода на 80% состоит из таких элементов, 15% - кванты-тетраэдры и 3% - классические молекулы Н2О. Таким образом, структура воды связана с так называемыми платоновыми телами (тетраэдр, додекаэдр), форма которых связана с золотой пропорцией. Ядро кислорода также имеет форму платонова тела (тетраэдра).

Элементарной ячейкой воды являются тетраэдры, содержащие связанные между собой водородными связями четыре (простой тетраэдр) или пять молекул Н2О (объемно-центрированный тетраэдр).

https://pandia.ru/text/78/208/images/image019_4.jpg" width="621" height="608 src=">

Рис. Додекаэдр

Таким образом, в воде возникают многочисленные кластеры, которые несут в себе очень большую энергию и информацию крайне высокой плотности. Порядковое число таких структур воды так же высоко, как и порядковое число кристаллов (структура с максимально высоким упорядочением, которую мы только знаем), потому их также называют «жидкими кристаллами» или «кристаллической водой». "Кванты воды" могут взаимодействовать друг с другом за счет свободных водородных связей, торчащих наружу из вершин “кванта” своими гранями. При этом возможно образование уже двух типов структур второго порядка. Их взаимодействие друг с другом приводит к появлению структур высшего порядка. Последние состоят из 912 молекул воды, которые по модели Зенина практически не способны к взаимодействию за счет образования водородных связей. Этим и объясняется, например, высокая текучесть жидкости, состоящей из громадных полимеров. Таким образом, водная среда представляет собой как бы иерархически организованный жидкий кристалл.

Рис. Формирование отдельного кластера воды (компъютерное моделирование)

Изменение положения одного структурного элемента в этом кристалле под действием любого внешнего фактора или изменение ориентации окружающих элементов под влиянием добавляемых веществ обеспечивает, согласно гипотезе Зенина, высокую чувствительность информационной системы воды. Если степень возмущения структурных элементов недостаточна для перестройки всей структуры воды в данном объеме, то после снятия возмущения система через 30-40 мин возвращается в исходное состояние. Если же перекодирование, т. е. переход к другому взаимному расположению структурных элементов воды оказывается энергетически выгодным, то в новом состоянии отражается кодирующее действие вызвавшего эту перестройку вещества [Зенин, 1994]. Такая модель позволяет Зенину объясненить "память воды" и ее информационные свойства [Зенин, 1997].

К. х.н.

Cписок литературы:

. Успехи физической химии, 2001

, . Экспериментальное доказательство наличия фракций воды. Ж. Гомеопатическая медицина и акупунктура . 1997.№2.С.42-46.

, . Гидрофобная модель структуры ассоциатов молекул воды. Ж. Физ. химии.1994.Т.68.№4.С.636-641.

Исследование структуры воды методом протонного магнитного резонанса. Докл. РАН.1993.Т.332.№3.С.328-329.

, . Природа гидрофобного взаимодействия. Возникновение ориентационных полей в водных растворах. Ж. Физ. химии.1994.Т.68.№3.С.500-503.

, . Исследование внутримолекулярных взаимодействий в нуклеотидамидах методом ЯМР. Материалы 2-й Всесоюзной конф. По динамич. Стереохимии. Одесса.1975.с.53.

Строение льда. В кристаллах льда также существуют водородные связи. Но здесь система таких связей статична, а следовательно, еще более прочна, чем в жидкой воде. В этом причина аномально высокой температуры плавления и удельной теплоты плавления льда. В кристаллах льда каждая молекула воды соединена водородными связями с четырьмя соседними. Такая структура ажурна – в ней много «пустот». Вот почему плотность льда сравнительно низка. При плавлении льда часть «пустот» заполняется «одиночными» и «сдвоенными» молекулами Н О, уже освободившимися из кристаллической решетки. Поэтому плотность воды выше, чем у льда. Объем льда на 10% больше объема воды. 2.

Фото 4 из презентации «Физические свойства воды» к урокам окружающего мира на тему «Свойства воды»

Размеры: 271 х 317 пикселей, формат: jpg. Чтобы бесплатно скачать фотографию для урока окружающего мира, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как...». Для показа фотографий на уроках Вы также можете бесплатно скачать всю презентацию «Физические свойства воды» со всеми фотографиями в zip-архиве. Размер архива - 338 КБ.

Скачать презентацию

Свойства воды

«Вода и её свойства» - Пословицы о воде. Малкарова Фатима ученица 2 класса с тетёй. Не надо расходовать воду напрасно. В.А.Сухомлинский. От жара и вода кипит. Где вода напрет, тут и ход найдет. Где воду не пусти, путь себе сыщет. Обычно воды в растениях и животных больше чем 50 процентов по весу. Цели проекта. В марте вода, в апреле трава.

«Урок Свойства воды» - Учебный предмет: естествознание. Состояния воды в природе. Проблемные вопросы. Вода – основное богатство на свете. Вода - источник жизни. Темы исследовательских работ. Без чего не будет жизни на Земле? Дидактическая цель. Сформировать знания об условиях превращения воды – переходе из одного состояния в другое.

«Свойства воды» - Чтобы не было беды – Жить нельзя нам без … Может ли человек прожить без воды? Ответьте на вопросы и выпишите буквы с правильными ответами: 1. Прозрачна. А такая угроза существует. Вода. Чем отличается первый рисунок от второго? Нарисуйте. Урок окружающего мира 3 класс. Тема урока. Без чего не может мама Ни готовить, ни стирать?

«Начальная школа Свойства воды» - Принимает форму любого сосуда. Вода в газообразном состоянии. Безвкусна. Окружающий мир 2 класс. Тема урока: «Вода». Не прозрачна. Не имеет запаха. Отметьте свойства воды. Не имеет цвета. Посмотрите, что забыл нарисовать художник? Твёрдая вода. Подумайте, к каким последствиям приводят изображённые ситуации.

«Физические свойства воды» - Вода. Вода имеет наибольшую удельную теплоемкость. Вещество. Строение льда. Существование воды. Дипольные молекулы. Молекулярная структура. Вода стоит на первом месте среди веществ, которые входят в состав клетки. Что мы знаем о воде. Удельная теплота замерзания. Лед. Аномально и изменение плотности воды.

«Свойства и значение воды» - На дворе переполох. Растворитель. Из земли пробиться смог. Никуда я не иду. Цвет. Вода «добывает» электрический ток. Вода. Свойство и значение воды. Самая большая и удобная дорога. Тысячи рыболовных судов. Руки наши в ваксе. Чистая капля. Без воды не замесить тесто для хлеба. Текучесть. Сверкает на лету.

Всего в теме 8 презентаций

Снежинки - одно из самых красивых, сложных и абсолютно уникальных творений природы. Как они образуются, из чего состоят?

Снег - твердые осадки в виде кристаллов (снежинок). Наблюдается исключительно большое разнообразие форм снежинок. Наиболее простые из них: иглы, столбики и пластинки. Кроме того, встречаются многочисленные усложненные формы снежинок: игольчатые звезды; пластинчатые звезды; ежи, состоящие из нескольких столбиков; столбики с пластинками и звездами на концах. Некоторые формы столбиков имеют внутренние полости или образуют вид бокалов; встречаются также 12-лучевые звезды. Размеры отдельных снежинок могут быть весьма различными. Наибольшие линейные размеры обычно имеют игольчатые звезды (их радиус достигает 4-5 мм). Снежинки часто соединяются между собой и выпадают в виде хлопьев. Размеры хлопьев могут достигать очень большой величины, наблюдались хлопья радиусом до 15-20 см. Форма снежинок отражает внутреннюю упорядоченность молекул воды, когда они находятся в твердом состоянии - в виде льда или снега. Снежинки растут точно так же, как растут кристаллы любого вещества, переходящего из жидкого состояния в твердое: соединяясь между собой, молекулы воды стремятся максимизировать силы взаимного притяжения и минимизировать силы отталкивания, так как энергия системы при кристаллизации уменьшается. Всего через несколько минут упав на теплую поверхность снежинка потеряет свою декоративную структуру, свой уникальный образ, который никогда снова не повторится.





Из чего же состоит снег? И снежинки, и снежные кристаллы образуются изо льда. Кристалл снега, как подразумевается из его названия, единый ледяной кристалл. Снежинка - более общий термин; он может подразумевать как индивидуальный кристалл снега, так и несколько снежных кристаллов, которые держатся вместе, или же большие скопления снежных кристаллов, формирующие снег, который падает из облаков. Структура кристаллов льда. Молекулы воды в кристалле льда формируют шестиугольную решётку (см. рисунок). Красные шары – атомы кислорода. Серые палочки – атомы водорода. По два водорода на один кислород – Н2О. Шестикратная симметрия снежинок берёт своё начало от кристаллической решётки льда. Снежинки растут из испарений воды. Снежинки – это не замёрзшие дождевые капли. Иногда капли дождя замерзают, пока падают, но это называется «град». Градины не имеют ни одного тщательно разработанного и симметричного образца, которые обнаруживаются в кристаллах снега. Снежные кристаллы образуются, когда испарения воды конденсируются непосредственно в лёд, что случается в облаках. Снежинки возникают вследствие роста кристаллов. Самая основная форма кристаллического снега – шестиугольная призма, показанная выше. Эта структура возникает, потому что определенные поверхности кристалла, поверхности граней, накапливают материал очень медленно. Это связано с тем, что поверхность, где образуются углы, более энергетически неравновесная, чем та, которая образует плоскость, так как на углах больше вероятность образовать связь молекул друг с другом. Это легко продемонстрировать на четырёхугольном кристалле – самой простой форме. С шестиугольными призмами та же история. На фотографии можно увидеть шестиугольные снежинки, собранные на Южном Полюсе Уолтером Тайпом (Walter Tape). Эти снежинки выросли достаточно крупными, так как их замерзание происходило на протяжении очень длительного времени, что позволило правилу образования кристаллов льда полностью проявить себя. Шестиугольная призма включает две шестиугольные "базовые" поверхности и шесть прямоугольных "призматических" поверхностей, как показано на рисунке. Заметьте, что шестиугольная призма может быть пластинчатой или столбчатой, что зависит от скорости роста поверхностей. Когда снежные кристаллы очень маленькие, они существуют по большей части в форме простых шестиугольных призм. Но когда они растут, «ветви» пускают ростки от углов призм, создавая более сложные формы.



Происхождение сложных форм снежинок. Ответ на этот вопрос лежит в том, как молекулы воды перемещаются через воздух, чтобы конденсироваться на растущем кристалле снега. Молекулы распространяются через воздух, чтобы достичь кристалла, и эта диффузия замедляет их нарастание. Более отдаленные молекулы воды должны дольше перемещаться в воздухе, чтобы достичь растущего кристалла. Итак, рассмотрим плоскую ледяную поверхность, которая растет в воздухе. Если происходит маленькое столкновение и остаётся на поверхности, то след от него выдвигается немного дальше, чем остальная часть кристалла. Это означает, что другие молекулы воды могут достичь этого места быстрее, чем остальной части кристалла, поскольку к ней им приходится перемещаться дальше.

С увеличением числа молекул воды, достигающих места столкновения, место столкновения растет быстрее. Через короткое время столкновения происходят всё чаще, и рост происходит ещё быстрее. Затем возникает то, что называется неустойчивостью ветвления – новые маленькие столкновения зарождаются на больших ветвях, и становятся местом образования боковых ветвей. Так рождается сложность. Эта неустойчивость – главная причина в создании сложных форм снежных кристаллов.




Когда неустойчивость ветвления применяется к кристаллу снега снова и снова, в результате образуется то, что называется ледяным дендритом. Слово «дендрит» означает «древообразный», и звёздчатые древовидные кристаллы снега являются обычными. Скорость диффузии молекул воды можно менять в лаборатории. Если снежные кристаллы выращиваются в воздухе ниже атмосферного давления, они менее ветвистые. Это происходит потому, что диффузия не ограничивает прирост при низком давлении, следовательно, неустойчивость ветвления не настолько интенсивна. При больших давлениях образуются более ветвистые кристаллы снега. Рост снежных кристаллов зависит от равновесия между гранями и ветвлением. Грани стремятся создавать простые плоские поверхности, а ветвление – более сложные структуры. Взаимодействие между гранями и ветвлением является тонким и сильно зависит от таких параметров, как температура и влажность. Это означает, что снежные кристаллы могут расти многими различными способами, что приводит к большому разнообразию, которое наблюдается в формах снежинок.




Первым изучать снежинки начал известный астроном Иоганн Кеплер. В 1611 году он выпустил трактат «О шестиугольных снежинках», в котором в основном разбирал геометрические аспекты их строения. Следующего прорыва пришлось ждать больше двух веков. На 15ти летие мама подарила своему сыну, юному фермеру из штата Вермонт Уилсону Элвину Бентли, микроскоп. И тот решил смотреть в него на снежинки. 15 января 1885 года он получил первый снимок снежинки, приладив фотоаппарат к микроскопу и снимая ее на фоне черной бумаги. К концу своей жизни он получил изображения 5381 снежинки. В 1920 году он получит должность в Национальной метеослужбе и грант в $25 на свои исследования, а снег начнет сыпаться не только на фермах, но и в лабораториях кинетиков и кристаллографов. Но именно Бентли первым сказал, что двух одинаковых снежинок никогда не видел.Существует расхожее убеждение о том, что двух одинаковых снежинок в природе не бывает. Казалось бы, как же так. С неба сыпятся миллионы. Но, с другой стороны, если очень грубо прикинуть, то в снежинке примерно 1020 молекул воды, а человеческий глаз способен определить около 100 визуальных параметров снежинки. Так что такая мозаика может сложиться конечным, но безумно огромным числом способов. А если вспомнить, что атомы кислорода и водорода имеют разные изотопы, а в воде все равно есть примеси… в общем, стоит принять, что двух одинаковых снежинок в природе нет. Зато у кристаллов симметричная форма. Макроскопические факторы (температура, давление, концентрации различных веществ) в столь небольшом пространстве, как текущее положение зародыша кристалла в момент времени, отличаются несильно, и рост во все стороны одинаков. Пока не произойдет облом или, наоборот, слипание.

Вода - вещество привычное и необычное. Почти 3/4 поверхности нашей планеты занято океанами и морями. Твёрдой водой - снегом и льдом - покрыто 20% суши. От воды зависит климат планеты. Геофизики утверждают, что Земля давно бы остыла и превратилась в безжизненный кусок камня, если бы не вода. У неё очень большая теплоёмкость. Нагреваясь, она поглощает тепло; остывая, отдаёт его. Земная вода и поглощает, и возвращает очень много тепла и тем самым "выравнивает" климат. А от космического холода предохраняет Землю те молекулы воды, которые рассеяны в атмосфере - в облаках и в виде паров.

Вода – самое загадочное вещество в природе после ДНК, обладающее уникальными свойствами, которые не только ещё полностью не объяснены, но далеко не все известны. Чем дольше ее изучают, тем больше находят новых аномалий и загадок в ней. Большинство из этих аномалий, обеспечивающих возможность жизни на Земле, объясняются наличием между молекулами воды водородных связей, которые много сильнее вандерваальсовских сил притяжения между молекулами других веществ, но на порядок величины слабее ионных и ковалентных связей между атомами в молекулах. Такие же водородные связи также присутствуют и в молекуле ДНК.

Молекула воды (H 2 16 O) состоит из двух атомов водорода (H) и одного атома кислорода (16 O). Оказывается, что едва ли не все многообразие свойств воды и необычность их проявления определяется, в конечном счете, физической природой этих атомов, способом их объединения в молекулу и группировкой образовавшихся молекул.

Рис. Строение молекулы воды . Геометрическая схема (а), плоская модель (б) и пространственная электронная структура (в) мономера H2O. Два из четырех электронов внешней оболочки атома кислорода участвуют в создании ковалентных связей с атомами водорода, а два других образуют сильно вытянутые электронные орбиты, плоскость которых перпендикулярна плоскости Н-О-Н.

Молекула воды H 2 O построена в виде треугольника: угол между двумя связками кислород - водород 104 градуса. Но поскольку оба водородных атома расположены по одну сторону от кислорода, электрические заряды в ней рассредоточиваются. Молекула воды полярная, что является причиной особого взаимодействия между разными её молекулами. Атомы водорода в молекуле H 2 O, имея частичный положительный заряд, взаимодействуют с электронами атомов кислорода соседних молекул. Такая химическая связь называется водородной. Она объединяет молекулы H 2 O в своеобразные ассоциаты пространственного строения; плоскость, в которой расположены водородные связи, перпендикулярны плоскости атомов той же молекулы H 2 O. Взаимодействием между молекулами воды и объясняются в первую очередь незакономерно высокие температуры её плавления и кипения. Нужно подвести дополнительную энергию, чтобы расшатать, а затем разрушить водородные связи. И энергия эта очень значительна. Вот почему так велика теплоёмкость воды.

В молекуле воды имеются две полярные ковалентные связи Н–О. Они образованы за счёт перекрывания двух одноэлектронных р - облаков атома кислорода и одноэлектронных S - облаков двух атомов водорода.

В соответствии с электронным строением атомов водорода и кислорода молекула воды располагает четырьмя электронными парами. Две из них участвуют в образовании ковалентных связей с двумя атомами водорода, т.е. являются связывающими. Две другие электронные пары являются свободными - не связывающими. Они образуют электронное облако. Облако неоднородно – в нем можно различить отдельные сгущения и разрежения.

В молекуле воды имеются четыре полюс зарядов: два - положительные и два - отрицательные. Положительные заряды сосредоточены у атомов водорода, так как кислород электроотрицательнее водорода. Два отрицательных полюса приходятся на две не связывающие электронные пары кислорода.

У кислородного ядра создается избыток электронной плотности. Внутренняя электронная пара кислорода равномерно обрамляет ядро: схематически она представлена окружностью с центром -ядром O 2- . Четыре внешних электрона группируются в две электронные пары, тяготеющие к ядру, но частично не скомпенсированные. Схематически суммарные электронные орбитали этих пар показаны в виде эллипсов, вытянутых от общего центра – ядра O 2- . Каждый из оставшихся двух электронов кислорода образует пару с одним электроном водорода. Эти пары также тяготеют к кислородному ядру. Поэтому водородные ядра – протоны – оказываются несколько оголенными, и здесь наблюдается недостаток электронной плотности.

Таким образом, в молекуле воды различают четыре полюса зарядов: два отрицательных (избыток электронной плотности в области кислородного ядра) и два положительных (недостаток электронной плотности у двух водородных ядер). Для большей наглядности можно представить, что полюса занимают вершины деформированного тетраэдра, в центре которого находится ядро кислорода.

Рис. Строение молекулы воды: а – угол между связями O-H; б – расположение полюсов заряда; в – внешний вид электронного облака молекулы воды.

Почти шарообразная молекула воды имеет заметно выраженную полярность, так как электрические заряды в ней расположены асимметрично. Каждая молекула воды является миниатюрным диполем с высоким дипольным моментом – 1,87 дебая. Дебай – внесистемная единица электрического дипольного 3,33564·10 30 Кл·м. Под воздействием диполей воды в 80 раз ослабевают межатомные или межмолекулярные силы на поверхности погруженного в нее вещества. Иначе говоря, вода имеет высокую диэлектрическую проницаемость, самую высокую из всех известных нам соединений.

Во многом благодаря этому, вода проявляет себя как универсальный растворитель. Ее растворяющему действию в той или иной мере подвластны и твердые тела, и жидкости, и газы.

Удельная теплоемкость воды наибольшая среди всех веществ. Кроме того, она в 2 раза выше, чем у льда, в то время как у большинства простых веществ (например, металлов) в процессе плавления теплоемкость практически не изменяется, а у веществ из многоатомных молекул она, как правило, уменьшается при плавлении.

Подобное представление о строении молекулы позволяет объяснить многие свойства воды, в частности структуру льда. В кристаллической решётке льда каждая из молекул окружена четырьмя другими. В плоскостном изображении это можно представить так:

Связь между молекулами осуществляется посредством атома водорода. Положительно заряженный атом водорода одной молекулы воды притягивается к отрицательно заряженному атому кислорода другой молекулы воды. Такая связь получила название водородной (её обозначают точками). По прочности водородная связь примерно в 15 - 20 раз слабее ковалентной связи. Поэтому водородная связь легко разрывается, что наблюдается, например, при испарении воды.

Рис. слева - Водородные связи между молекулами воды

Структура жидкой воды напоминает структуру льда. В жидкой воде молекулы также связаны друг с другом посредством водородных связей, однако структура воды менее "жёсткая", чем у льда. Вследствие теплового движения молекул в воде одни водородные связи разрываются, другие образуются.

Рис. Кристаллическая решётка льда. Молекулы воды H 2 O (чёрные шарики) в её узлах расположены так, что каждая имеет четырёх „соседок".

Полярность молекул воды, наличие в них частично нескомпенсированных электрических зарядов порождает склонность к группировке молекул в укрупненные «сообщества» – ассоциаты. Оказывается, полностью соответствует формуле Н2O лишь вода, находящаяся в парообразном состоянии. Это показали результаты определения молекулярной массы водяного пара. В температурном интервале от 0 до 100°С концентрация отдельных (мономерных молекул) жидкой воды не превышает 1%. Все остальные молекулы воды объединены в ассоциаты различной степени сложности, и их состав описывается общей формулой (H 2 O)x.

Непосредственной причиной образования ассоциатов являются водородные связи между молекулами воды. Они возникают между ядрами водорода одних молекул и электронными «сгущениями» у ядер кислорода других молекул воды. Правда, эти связи в десятки раз слабее, чем «стандартные» внутримолекулярные химические связи, и достаточно обычных движений молекул, чтобы разрушить их. Но под влиянием тепловых колебаний так же легко возникают и новые связи этого типа. Возникновение и распад ассоциатов можно выразить схемой:

x·H 2 O↔ (H 2 O) x

Поскольку электронные орбитали в каждой молекуле воды образуют тетраэдрическую структуру, водородные связи могут упорядочить расположение молекул воды в виде тетраэдрических координированных ассоциатов.

Большинство исследователей объясняют аномально высокую теплоемкость жидкой воды тем, что при плавлении льда его кристаллическая структура разрушается не сразу. В жидкой воде сохраняются водородные связи между молекулами. В ней остаются как бы обломки льда - ассоциаты из большого или меньшего числа молекул воды. Однако в отличие от льда каждый ассоциат существует недолго. Постоянно происходит разрушение одних и образование других ассоциатов. При каждом значении температуры в воде устанавливается свое динамическое равновесие в этом процессе. А при нагревании воды часть теплоты затрачивается на разрыв водородных связей в ассоциатах. При этом на разрыв каждой связи расходуется 0,26-0,5 эВ. Этим и объясняется аномально высокая теплоемкость воды по сравнению с расплавами других веществ, не образующих водородных связей. При нагревании таких расплавов энергия расходуется только на сообщение тепловых движений их атомам или молекулам. Водородные связи между молекулами воды полностью разрываются только при переходе воды в пар. На правильность такой точки зрения указывает и то обстоятельство, что удельная теплоемкость водяного пара при 100°С практически совпадает с удельной теплоемкостью льда при 0°С.

Рисунок ниже:

Элементарным структурным элементом ассоциата является кластер: Рис. Отдельный гипотетический кластер воды. Отдельные кластеры образуют ассоциаты молекул воды (H 2 O) x: Рис. Кластеры из молекул воды образуют ассоциаты.

Существует и другая точка зрения на природу аномально высокой теплоемкости воды. Профессор Г. Н. Зацепина заметила, что молярная теплоемкость воды, составляющая 18 кал/(мольград), точно равна теоретической молярной теплоемкости твердого тела с трехатомными кристаллами. А в соответствии с законом Дюлонга и Пти атомные теплоемкости всех химически простых (одноатомных) кристаллических тел при достаточно высокой температуре одинаковы и равны 6 калДмоль o град). А для трехатомных, в граммоле которых содержится 3 N а узлов кристаллической решетки, - в 3 раза больше. (Здесь N а - число Авогадро).

Отсюда следует, что вода является как бы кристаллическим телом, состоящим из трехатомных молекул Н 2 0. Это соответствует распространенному представлению о воде как смеси кристаллоподобных ассоциатов с небольшой примесью свободных молекул H 2 O воды между ними, число которых растет с повышением температуры. С этой точки зрения вызывает удивление не высокая теплоемкость жидкой воды, а низкая твердого льда. Уменьшение удельной теплоемкости воды при замерзании объясняется отсутствием поперечных тепловых колебаний атомов в жесткой кристаллической решетке льда, где у каждого протона, обуславливающего водородную связь, остается только одна степень свободы для тепловых колебаний вместо трех.

Но за счет чего и как могут происходить столь большие изменения теплоемкости воды без соответствующих изменений давления? Чтобы ответить на этот вопрос, познакомимся с гипотезой кандидата геолого-минералогических наук Ю. А. Колясникова о структуре воды.

Он указывает, что еще первооткрыватели водородных связей Дж. Бернал и Р. Фаулер в 1932 г. сравнивали структуру жидкой воды с кристаллической структурой кварца, а те ассоциаты, о которых говорилось выше, - это в основном тетрамеры 4Н 2 0, в которых четыре молекулы воды соединены в компактный тетраэдр с двенадцатью внутренними водородными связями. В результате образуется четырёхгранная пирамида - тетраэдр.

При этом, водородные связи в этих тетрамерах могут образовывать как право- так и левовинтовую последовательности, подобно тому, как кристаллы широко распространённого кварца (Si0 2), тоже имеющие тетраэдрическую структуру, бывают право- и лево-вращательной кристаллической форм. Поскольку каждый такой тетрамер воды имеет еще и четыре незадействованные внешние водородные связи (как у одной молекулы воды), то тетрамеры могут соединяться этими внешними связями в своего рода полимерные цепочки, наподобие молекулы ДНК. А поскольку внешних связей всего четыре, а внутренних - в 3 раза больше, то это позволяет тяжелым и прочным тетрамерам в жидкой воде изгибать, поворачивать и даже надламывать эти ослабленные тепловыми колебаниями внешние водородные связи. Это и обуславливает текучесть воды.

Такую структуру вода, по мнению Колясникова, имеет только в жидком состоянии и, возможно, частично в парообразном. А вот во льду, кристаллическая структура, которого хорошо изучена, тетрагидроли соединены между собой негибкими равнопрочными прямыми водородными связями в ажурный каркас с большими пустотами в нем, что делает плотность льда меньше плотности воды.

Рис. Кристаллическая структура льда: молекулы воды соединены в правильные шестиугольники

Когда же лед тает, часть водородных связей в нем ослабевает и изгибается, что ведет к перестройке структуры в вышеописанные тетрамеры и делает жидкую воду более плотной, чем лед. При 4°С наступает состояние, когда все водородные связи между тетрамерами максимально изогнуты, чем и обуславливается максимум плотности воды при этой температуре. Дальше связям гнуться некуда.

При температуре выше 4°С начинается разрывание отдельных связей между тетрамерами, и при 36-37°С оказывается разорвана половина внешних водородных связей. Это и определяет минимум на кривой зависимости удельной теплоемкости воды от температуры. При температуре же 70°С разорваны уже почти все межтетрамерные связи, и наряду со свободными тетрамерами в воде остаются только короткие обрывки "полимерных" цепочек из них. Наконец при кипении воды происходит окончательный разрыв теперь уже одиночных тетрамеров на отдельные молекулы Н 2 0. И то обстоятельство, что удельная теплота испарения воды ровно в 3 раза больше суммы удельных теплот плавления льда и последующего нагрева воды до 100°С, является подтверждением предположения Колясникова о том. что число внутренних связей в тетрамере в 3 раза больше числа внешних.

Такая тетраэдрально-винтовая структура воды может быть обусловлена ее древней реологической связью с кварцем и другими кремнекислородными минералами, преобладающими в земной коре, из недр которой когда-то появилась вода на Земле. Как маленький кристаллик соли заставляет окружающий его раствор кристаллизоваться в подобные ему кристаллы, а не в другие, так кварц заставил молекулы воды выстраиваться в тетраэдрические структуры, которые, энергетически наиболее выгодны. А в нашу эпоху в земной атмосфере водяные пары, конденсируясь в капли, образуют такую структуру потому, что в атмосфере всегда присутствуют мельчайшие капельки аэрозольной воды, уже имеющей эту структуру. Они и являются центрами конденсации водяных паров в атмосфере. Ниже приведены возможные цепочечные силикатные структуры на основе тетраэдра, которые могут быть составлены и из тетраэдров воды.

Рис. Элементарный правильный кремне-кислородный тетраэдр SiO 4 4- .

Рис. Элементарные кремнекислородные единицы-ортогруппы SiO 4 4- в структуре Mg-пироксена энстатите (а) и диортогруппы Si 2 O 7 6- в Са-пироксеноиде волластоните (б).

Рис. Простейшие типы островных кремнекислородных анионных группировок: а-SiO 4 , б-Si 2 O 7 , в-Si 3 O 9 , г-Si 4 О 12 , д-Si 6 O 18 .

Рис. ниже - Важнейшие типы кремнекислородных цепочечных анионных группировок (по Белову): а-метагерманатная, б - пироксеновая, в - батиситовая, г-волластонитовая, д-власовитовая, е-мелилитовая, ж-родонитовая, з-пироксмангитовая, и-метафосфатная, к-фторобериллатная, л - барилитовая.

Рис. ниже - Конденсация пироксеновых кремнекислородных анионов в сотовые двухрядные амфиболовые (а), трехрядные амфиболоподобные (б), слоистые тальковые и близкие им анионы (в).

Рис. ниже - Важнейшие типы ленточных кремнекислородных группировок (по Белову): а - силлиманитовая, амфиболовая, ксонотлитовая; б-эпидидимитовая; в-ортоклазовая; г-нарсарсукитовая; д-фенакитовая призматическая; е-эвклазовая инкрустированная.

Рис. справа - Фрагмент (элементарный пакет) слоистой кристаллической структуры мусковита KAl 2 (AlSi 3 O 10 XOH) 2 , иллюстрирующий переслаивание алюмокремне-кислородных сеток с полиэдрическими слоями крупных катионов алюминия и калия, напоминает цепочку ДНК.

Возможны и другие модели водной структуры. Тетраэдрически связанные молекулы воды образуют своеобразные цепочки довольно стабильного состава. Исследователи раскрывают все более тонкие и сложные механизмы «внутренней организации» водной массы. Кроме льдоподобной структуры, жидкой воды и мономерных молекул, описан и третий элемент структуры – нететраэдрической.

Определенная часть молекул воды ассоциирована не в трехмерные каркасы, а в линейные кольцевые объединения. Кольца, группируясь, образуют еще более сложные комплексы ассоциатов.

Таким образом, вода теоретически может образовывать цепочки, наподобие молекулы ДНК, о чём будет сказано ниже. В этой гипотезе интересно еще и то, что из нее следует равновероятность существования право - и левовинтовой воды. Но биологами давно подмечено, что в биологических тканях и структурах наблюдаются только либо лево -, либо правовинтовые образования. Пример тому - белковые молекулы, построенные только из лево-винтовых аминокислот и закрученные только по левовинтовой спирали. А вот сахара в живой природе - все только правовинтовые. Никто пока не смог объяснить, почему в живой природе обнаруживается такое предпочтение к левому в одних случаях и к правому - в других. Ведь в неживой природе с равной вероятностью встречаются как право-, так и левовинтовые молекулы.

Более ста лет назад знаменитый французский естествоиспытатель Луи Пастер обнаружил, что органические соединения в составе растений и животных оптически асимметричны - они вращают плоскость поляризации падающего на них света. Все аминокислоты, входящие в состав животных и растений, вращают плоскость поляризации влево, а все сахара - вправо. Если мы синтезируем такие же по химическому составу соединения, то в каждом из них будет равное количество лево- и правовращающих молекул.

Как известно, все живые организмы состоят из белков, а они, в свою очередь, - из аминокислот. Соединяясь друг с другом в разнообразной последовательности, аминокислоты образуют длинные пептидные цепи, которые самопроизвольно "закручиваются" в сложные белковые молекулы. Подобно многим другим органическим соединениям, аминокислоты обладают хиральной симметрией (от греч. хирос - рука), то есть могут существовать в двух зеркально симметричных формах, называемых "энантиомеры". Такие молекулы похожи одна на другую, как левая и правая рука, поэтому их называют D- и L-молекулами (от лат. dexter, laevus - правый и левый).

Теперь представим себе, что среда с левыми и правыми молекулами перешла в состояние только с левыми или только с правыми молекулами. Такую среду специалисты называют хирально (от греческого слова "хейра" - рука) упорядоченной. Самовоспроизведение живого (биопоэз - по определению Д. Бернала) могло возникнуть и поддерживаться только в такой среде.

Рис. Зеркальная симметрия в природе

Другое название молекул-энантиомеров - "правовращающие" и "левовращающие" - происходит от их способности вращать плоскость поляризации света в различных направлениях. Если линейно поляризованный свет пропустить через раствор таких молекул, происходит поворот плоскости его поляризации: по часовой стрелке, если молекулы в растворе правые, и против - если левые. А в смеси одинаковых количеств D-и L-форм (она называется "рацемат") свет сохранит первоначальную линейную поляризацию. Это оптическое свойство хиральных молекул впервые было обнаружено Луи Пастером в 1848 году.

Любопытно, что почти все природные белки состоят только из левых аминокислот. Этот факт тем более удивляет, что при синтезе аминокислот в лабораторных условиях образуется примерно одинаковое число правых и левых молекул. Оказывается, этой особенностью обладают не только аминокислоты, но и многие другие важные для живых систем вещества, причем каждое имеет строго определенный знак зеркальной симметрии во всей биосфере. Например, сахара, входящие в состав многих нуклеотидов, а также нуклеиновых кислот ДНК и РНК, представлены в организме исключительно правыми D-молекулами. Хотя физические и химические свойства "зеркальных антиподов" совпадают, их физиологическая активность в организмах различна: L-caxaра не усваиваются, L-фенилаланин в отличие от безвредных его D-молекул вызывает психические заболевания и т. д.

Согласно современным представлениям о происхождении жизни на Земле, выбор органическими молекулами определенного типа зеркальной симметрии послужил главной предпосылкой их выживания и последующего самовоспроизводства. Однако вопрос, как и почему произошел эволюционный отбор того или иного зеркального антипода, - до сих пор остается одной из самых больших загадок науки.

Советский ученый Л. Л. Морозов доказал, что переход к хиральной упорядоченности мог произойти не эволюционно, а только при каком-то определённом резком фазовом изменении. Академик В. И. Гольданский назвал этот переход, благодаря которому зародилась жизнь на Земле хиральной катастрофой.

Как же возникли условия для фазовой катастрофы, вызвавшей хиральный переход?

Наиболее важным было то, что органические соединения плавились при 800-1000 0С в земной коре, а верхние остывали до температуры космоса, то есть абсолютного нуля. Перепад температуры достигал 1000 °С. В таких условиях органические молекулы плавились под действием высокой температуры и даже полностью разрушались, а верх оставался холодным, так как органические молекулы замораживались. Газы и пары воды, которые просачивались из земной коры, меняли химический состав органических соединений. Газы несли с собой тепло, из-за чего граница плавления органического слоя смещалась вверх и вниз, создавая градиент.

При очень низких давлениях атмосферы вода была на земной поверхности лишь в виде пара и льда. Когда же давление достигало так называемой тройной точки воды (0,006 атмосферы), вода впервые смогла находиться в виде жидкости.

Конечно, лишь экспериментально можно доказать, что именно вызвало хиральный переход: земные или космические причины. Но так или иначе в какой-то момент хирально упорядоченные молекулы (а именно - левовращающие аминокислоты и правовращающие сахара) оказались более устойчивыми и начался неостановимый рост их количества - хиральный переход.

Летопись планеты повествует и о том, что тогда на Земле не было ни гор, ни впадин. Полурасплавленная гранитная кора представляла собой поверхность столь же ровную, как уровень современного океана. Однако в пределах этой равнины все же были понижения из-за неравномерного распределения масс внутри Земли. Эти понижения сыграли чрезвычайно важную роль.

Дело в том, что плоскодонные впадины поперечником в сотни и даже тысячи километров и глубиной не более ста метров, вероятно, и стали колыбелью жизни. Ведь в них стекала вода, собиравшаяся на поверхности планеты. Вода разбавляла хиральные органические соединения в пепловом слое. Постепенно менялся химический состав соединения, стабилизировалась температура. Переход от неживого к живому, начавшийся в безводных условиях, продолжался уже в водной среде.

Таков ли сюжет зарождения жизни? Вероятнее всего, что да. В геологическом разрезе Исуа (Западная Гренландия), возраст которого 3,8 миллиарда лет, найдены бензино- и нефтеподобные соединения с изотопным соотношением С12/С13, свойственным углероду фотосинтетического происхождения.

Если биологическая природа углеродистых соединений из разреза Исуа подтвердится, то получится, что весь период зарождения жизни на Земле - от возникновения хиральной органики до появления клетки, способной к фотосинтезу и размножению,- был пройден лишь за сто миллионов лет. И в этом процессе огромную роль сыграли молекулы воды и ДНК.

Самое удивительное в структуре воды заключается в том, что молекулы воды при низких отрицательных температурах и высоких давлениях внутри нанотрубок могут кристаллизоваться в форме двойной спирали, напоминающую ДНК. Это было доказано компьютерными экспериментами американских учёных под руководством Сяо Чэн Цзэна в Университете штата Небраска (США).

ДНК представляет собой двойную цепочку, скрученную в спираль. Каждая нить состоит из "кирпичиков" - из последовательно соединенных нуклеотидов. Каждый нуклеотид ДНК содержит одно из четырёх азотистых оснований - гуанин (G), аденин (A) (пурины), тимин (T) и цитозин (C) (пиримидины), связанное с дезоксирибозой, к последней, в свою очередь, присоединена фосфатная группа. Между собой соседние нуклеотиды соединены в цепи фосфодиэфирной связью, образованной 3"-гидроксильной (3"-ОН) и 5"-фосфатной группами (5"-РО3). Это свойство обуславливает наличие полярности в ДНК, т.е. противоположной направленности, а именно 5"- и 3"-концов: 5"-концу одной нити соответствует 3"-конец второй нити. Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции и принимают участие в важнейшем процессе жизни – передачи и копирования информации (трансляции).

Первичная структура ДНК - это линейная последовательность нуклеотидов ДНК в цепи. Последовательность нуклеотидов в цепи ДНК записывают в виде буквенной формулы ДНК: например - AGTCATGCCAG, запись ведется с 5"- на 3"-конец цепи ДНК.

Вторичная структура ДНК образуется за счет взаимодействий нуклеотидов (в большей степени азотистых оснований) между собой, водородных связей. Классический пример вторичной структуры ДНК - двойная спираль ДНК. Двойная спираль ДНК - самая распространенная в природе форма ДНК, состоящая из двух полинуклеотидных цепей ДНК. Построение каждой новой цепи ДНК осуществляется по принципу комплементарности, т.е. каждому азотистому основанию одной цепи ДНК соответствует строго определенное основание другой цепи: в комплемнтарной паре напротив A стоит T, а напротив G располагается C и т.д.

Чтобы вода сформировала спираль, наподобие, в моделируемом эксперименте она "помещалась" в нанотрубки под высоким давлением, варьирующимися в разных опытах от 10 до 40000 атмосфер. После этого задавали температуру, которая имела значение -23°C. Запас по сравнению с температурой замерзания воды делался в связи с тем, что с повышением давления температура плавления водяного льда понижается. Диаметр нанотрубок составлял от 1,35 до 1,90 нм.

Рис. Общий вид структуры воды (изображение New Scientist)

Молекулы воды связываются между собой посредством водородных связей, расстояние между атомами кислорода и водорода равно 96 пм, а между двумя водородами - 150 пм. В твёрдом состоянии атом кислорода участвует в образовании двух водородных связей с соседними молекулами воды. При этом отдельные молекулы H 2 O соприкасаются друг с другом разноимёнными полюсами. Таким образом, образуются слои, в которых каждая молекула связана с тремя молекулами своего слоя и одной из соседнего. В результате, кристаллическая структура льда состоит из шестигранных "трубок" соединенных между собой, как пчелиные соты.

Рис. Внутренняя стенка структуры воды (изображение New Scientist)

Учёные ожидали увидеть, что вода во всех случаях образует тонкую трубчатую структуру. Однако, модель показала, что при диаметре трубки в 1,35 нм и давлении в 40000 атмосфер водородные связи искривились, приведя к образованию спирали с двойной стенкой. Внутренняя стенка этой структуры является скрученной в четверо спиралью, а внешняя состоит из четырёх двойных спиралей, похожих на структуру молекулы ДНК.

Последний факт накладывает отпечаток не только на эволюцию наших представлений о воде, но и эволюцию ранней жизни и самой молекулы ДНК. Если предположить, что в эпоху зарождения жизни криолитные глинистые породы имели форму нанотрубок, возникает вопрос - не могла ли вода, сорбированная в них служить структурной основой (матрицей) для синтеза ДНК и считывания информации? Возможно, поэтому спиральная структура ДНК повторяет спиральную структуру воды в нанотрубках. Как сообщает журнал New Scientist, теперь нашим зарубежным коллегам предстоит подтвердить существование таких макромолекул воды в реальных экспериментальных условиях с использованием инфракрасной спектроскопии и спектроскопии нейтронного рассеяния.

К.х.н. О.В. Мосин