Сцепленное наследование. Г. Мендель опубликовал результаты своих исследований в 1865 г., однако тогда его открытия остались незамеченными. Только в 1900 г. К-Корренс (Германия), Г. де Фриз (Голландия) и Э. Чер мак (Австрия) независимо друг от друга обнаружили у разных видов растений те же закономерности наследования признаков, что и Г. Мендель. Английский генетик У. Бэтсон подтвердил законы Менделя на животных. Переоткрытие законов Менделя вызвало глубокий интерес к изучению закономерностей наследования признаков и способствовало быстрому развитию генетики.

В 1902 г. немецкий цитолог и эмбриолог Т. Б о в е р и представил доказательства участия хромосом в процессах передачи наследственной информации. Он показал, например, что нормальное развитие морского ежа возможно лишь при наличии всех хромосом. Подобную связь заметил в 1903 г. и американский цитологУ. С эттон. Так получили обоснование предположения Менделя

о наследственных факторах, о наличии одинарного набора этих факторов в гаметах и двойного - в зиготах. В 1909 г. датский биолог В. Иогансен ввел понятие s.ген:/.

В 1910 г. американский генетик Т. Морган экспериментально доказал, что гены расположены в хромосомах. Многочисленные исследования Моргана и его учеников привели к целому ряду важнейших открытий, которые легли в основу хромосомной теории наследственности. Одно из ее положений можно сформулировать следующим образом: гены расположены в хромосомах в линейном порядке и занимают определенные участки - локусы, причем аллельные гены находятся в одинаковых локусах гомологичных хромосом.

Закон независимого наследования (третий закон Менделя) справедлив в том случае, если неаллельные гены находятся в разных парах хромосом. Однако количество генов у живых организмов значительно больше числа хромосом. Например, у человека около 25 тыс. генов, а количество хромосом -

23 пары (2п = 46); у плодовой мушки дрозофилы приблизительно 14 тыс. генов и всего 4 пары хромосом (2п = 8). Следовательно, каждая хромосома содержит множество генов. Будут ли гены, локализованные в одной хромосоме, наследоваться независимо? Очевидно, что нет.

Гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются вместе. Совместное наследование генов Т. Морган предложил называть сцепленным наследованием (в отличие от независимого). Каждая пара гомологичных хромосом содержит гены, контролирующие одни и те же признаки, поэтому количество групп сцепления равно числу пар хромосом. Например, у человека 23 группы сцепления, а у дрозофилы - 4.

Вам известно, что при независимом наследовании дигетерозиготная особь, например =^=, образует четыре типа гамет в равном соотношении, т. е. по 25 %: Л В, АЬ, а В и ab. Это обусловлено тем, что неаллельные гены находятся в разных парах хромосом. Если же они расположены в гомологичных хромосомах, следовало бы ожидать, что дигетерозигота будет производить лишь два типа га- ab

мет: 50 % АВ и 50 % ab (обратите внимание на то, что сцепленные гены записываются в одну хромосому).

Однако Т. Морган обнаружил, что в большинстве случаев дигетерозиготные особи образуют не два, а четыре типа гамет. Помимо ожидаемых АВ и ab формируются также гаметы с новыми комбинациями генов: АЬ и аВ, только в меньшем процентном соотношении. Рассмотрим один из экспериментов Т. Моргана, в котором изучалось наследование сцепленных генов у дрозофилы.

Если почистить фрукты или овощи и не сразу выбросить очистки либо оставить фрукты на столе на несколько дней, то можно заметить, как вокруг остатков пищи начнут роиться маленькие мушки размером около 2-3,5 мм. Это дрозофилы - плодовые мушки, род насекомых отряда Двукрылые (рис. 95). Обычно дрозофилы имеют красные глаза и желтокоричневую окраску брюшка. Жизненный цикл дрозофил короток: развитие от яйца до половозрелой особи при 25 °С занимает 10 дней. Небольшие размеры, высокая плодовитость, простота культивирования и ряд других особенностей на долгое время сделали дрозофилу главным объектом генетики. Не один нобелевский лауреат, кроме своего интеллекта, обязан ей своими научными достижениями.

Путем скрещивания чистой линии дрозофил, имеющих серое тело и нормальные (длинные) крылья, с чистой линией, особи которой имели черное тело и зачаточные крылья, были получены гибриды первого поколения (рис. 96). Все они в соответствии с законом единообразия были серыми с нормально развитыми крыльями. Следовательно, у дрозофил серое тело (А) полностью доминирует над черным (а), а нормальные крылья (В) - над зачаточными (b ). Все гибриды первого поколения - дигетерозиготы.

Затем было проведено анализирующее скрещивание (рис. 97). Дигетерозиготную самку из гибридного поколения скрестили с рецессивным дигомозиготным самцом (черное тело и зачаточные крылья). В потомстве было получено по 41,5 % особей с серым телом, нормальными крыльями и черным телом, зачаточными крыльями, а также по 8,5 % мух с серым телом, зачаточными крыльями и черным телом, нормальными крыльями.

Если бы гены, определяющие цвет тела и развитие крыльев, находились в разных парах хромосом, соотношение фенотипических классов было бы равным - по 25 %. Но этого не наблюдалось, значит, гены находятся в гомологичных хромосомах и наследуются сцепленно.

Несмотря на сцепление генов, АВ самка производила не два, а четыре типа гамет. Однако гамет с исходными сочетаниями сцепленных генов формировалось намного больше (АВ и ab вместе составили 83 %), чем с новыми их сочетаниями (сумма АЬ и дВ равна 17 %).

Было выяснено, что причиной появления хромосом с новыми комбинациями родительских генов является кроссинговер. Вы помните, что этот процесс происходит в профазе I мейоза и представляет собой обмен соответствующими участками между гомологичными хромосомами. Таким образом, кроссинговер препятствует полному (абсолютному) сцеплению генов. Гаметы, которые образуются в результате кроссинговера, и особи, которые развиваются при участии таких гамет, называются кроссоверными или рекомбинантными. В рассмотренном эксперименте гаметы АЬ и аВ являлись кроссоверными, а гаметы АВ и ab - некроссоверными (см. рис. 97).

Кроссинговер между конкретными сцепленными генами происходит с определенной вероятностью (частотой). Для расчета частоты кроссинговера (rf, от англ. recombination frequency - частота рекомбинации) можно пользоваться следующей формулой:

Таким образом, между генами А и В, контролирующими цвет тела и длину крыльев дрозофилы, кроссинговер происходит с частотой: rf AB = 17 %.

Дальнейшие исследования, проведенные Т. Морганом и его сотрудниками, показали, что частота кроссинговера пропорциональна расстоянию между генами, расположенными в одной хромосоме. Чем больше расстояние между сцепленными генами, тем чаще между ними происходит кроссинговер. И наоборот, чем ближе друг к другу расположены гены, тем меньше частота кроссинговера между ними. Чем объясняется эта закономерность?

В профазе I мейоза при конъюгации гомологичных хромосом образование перекрестов между хроматидами осуществляется произвольно, на любых соответствующих участках. Рассмотрим рисунок 98.

Гены А и В (или а. и Ь) находятся сравнительно близко друг к другу. Вероятность того, что перекрест произойдет именно на участке, разделяющем эти гены, невелика. Гены А и D (или а. и d) располагаются на значительном расстоянии друг от друга. Поэтому вероятность того, что хроматиды перекрестятся на каком-либо участке между ними, намного выше. Значит, чем больше расстояние между генами, тем чаще они разделяются при кроссинговере.

Таким образом, частота кроссинговера позволяет судить о расстоянии между генами. В честь Т. Моргана единица измерения расстояния между генами получила название моргай и да или, что то же самое, санти моргай и да (сМ).

Морганида (сантиморганида, сМ) - это генетическое расстояние, на котором кроссинговер происходит с вероятностью 1 %.

Биологическое значение кроссинговера чрезвычайно велико. В результате этого процесса возникают новые комбинации родительских генов, что повышает генетическое разнообразие потомства и расширяет возможности адаптации организмов к различным условиям окружающей среды.

Генетические карты. Т. Морган и сотрудники его лаборатории показали, что знание частоты кроссинговера между сцепленными генами позволяет строить генетические карты хромосом. Генетическая карта представляет собой схему взаимного расположения генов, находящихся в одной группе сцепления, с учетом расстояний между ними (рис. 99).

Генетические карты хромосом уже составлены для человека, многих видов животных, растений, грибов и микроорганизмов. Наличие генетической карты свидетельствует о высокой степени изученности того или иного вида организма и представляет большой научный интерес. Такой организм является прекрасным объектом для проведения дальнейших экспериментальных работ, имеющих не только научное, но и практическое значение. В частности, знание генетических карт позволяет планировать работы по получению организмов с определенными сочетаниями признаков, что широко применяется в селекционной практике. Генетические карты хромосом человека используются в медицине для диагностики и лечения ряда наследственных заболеваний.

Основные положения хромосомной теории наследственности.

1. Гены в хромосомах расположены линейно, в определенной последовательности. Аллельные гены находятся в одинаковых локусах гомологичных хромосом.

2. Гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются вместе. Количество групп сцепления равно числу пар хромосом.

3. Сцепление генов может нарушаться в результате кроссинговера, происходящего при конъюгации гомологичных хромосом в профазе I мейоза.

4. Частота кроссинговера пропорциональна расстоянию между генами: чем больше расстояние, тем выше частота кроссинговера, и наоборот.

Б. За единицу расстояния между сцепленными генами принята 1 морганида - расстояние, на котором кроссинговер происходит с вероятностью 1 %.

Г. Мендель проследил наследование семи пар признаков у гороха. Многие исследователи, повторяя опыты Менделя, подтвердили открытые им законы. Было признано, что эти законы носят всеобщий характер. Однако в 1906 г. английские генетики В.Бэтсон и Р.Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве. Потомки всегда повторяли признаки родительских форм. Стало ясно, что не для всех генов характерно независимое распределение в потомстве и свободное комбинирование.

Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков.


Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался выдающийся американский генетик Т. Морган. Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила. Мушка каждые две недели при температуре 25°С дает многочисленное потомство. Самец и самка внешне хорошо различимы - у самца брюшко меньше и темнее.

Кроме того, они имеют всего 8 хромосом в диплоидном наборе и отличия по многочисленным признакам, могут размножаться в пробирках на дешевой питательной среде.

Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибридов, имеющих серое тело и нормальные крыльяи (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев - над геном недоразвитых) (рис. 327). При проведении анализирующего скрещивания самки F 1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% серые длиннокрылые и 41,5% черные с зачаточными крыльями) и лишь незначительная часть мушек имела перекомбинированные признаки (8,5% черные длиннокрылые и 8,5% серые с зачаточными крыльями).

Анализируя полученные результаты, Морган пришел к выводу, что гены, обусловливающие развитие серой окраски тела и длинных крыльев, локализованы в одной хромосоме, а гены, обусловливающие развитие черной окраски тела и зачаточных крыльев, - в другой. Явление совместного наследования признаков Морган назвал сцеплением . Материальной основой сцепления генов является хромосома. Гены, локализованные в одной хромосоме, наследуются совместно и образуют одну группу сцепления . Поскольку гомологичные хромосомы имеют одинаковый набор генов, количество групп сцепления равно гаплоидному набору хромосом (например, у человека 46 хромосом, или 23 пары гомологичных хромосом, соответственно количество групп сцепления в соматических клетках человека - 23). Явление совместного наследования генов, локализованных в одной хромосоме, называют сцепленным наследованием. Сцепленное наследование генов, локализованных в одной хромосоме, называют законом Моргана.

Вернемся к нашему примеру скрещивания мушек дрозофил. Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов - АВ и ав, а отцовский - один тип - ав . Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ и аавв . Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Аавв и ааВв . Каковы причины появления таких особей? Для объяснения этого факта необходимо вспомнить механизм образования половых клеток - мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В, появляются гаметы Ав и аВ, и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но поскольку кроссинговер происходит не во всех гаметах, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

В зависимости от особенностей образования гамет, различают:

некроссоверные гаметы - гаметы с хромосомами, образованными без кроссинговера:
кроссоверные гаметы - гаметы с хромосомами, претерпевшими кроссинговер:

Соответственно этому различают:

© рекомбинантные (кроссоверные ) особи - особи, возникшие с участием кроссоверных гамет;

© нерекомбинантные (некроссоверные ) особи - особи, возникшие без участия кроссоверных гамет.

Гены в хромосомах имеют разную силу сцепления. Сцепление генов может быть:

© полным , если между генами, относящимися к одной группе сцепления, рекомбинация невозможна (у самцов дрозофилы полное сцепление генов, хотя у подавляющего большинства других видов кроссинговер протекает сходно как у самцов, так и у самок);

© неполным , если между генами, относящимися к одной группе сцепления, возможна рекомбинация.

Вероятность возникновения перекреста между генами зависит от их расположения в хромосоме: чем дальше друг от друга расположены гены, тем выше вероятность перекреста между ними. За единицу расстояния между генами, находящимися в одной хромосоме, принят 1 % кроссинговера. Его величина зависит от силы сцепления между генами и соответствует проценту рекомбинантных особей от общего числа потомков, полученных при скрещивании. Например, в рассмотренном выше анализирующем скрещивании получено 17% особей с перекомбинированными признаками. Следовательно, расстояние между генами серой окраски тела и длинных крыльев (а также черной окраски тела и зачаточных крыльев) равно 17%. В честь Т. Моргана единица расстояния между генами названа морганидой .

Результатом исследований Т.Моргана стало создание им хромосомной теории наследственности:

© гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов, причем набор генов каждой из негомологичных хромосом уникален;

© каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;

© гены расположены в хромосомах в определенной линейной последовательности;

© гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;

© сцепление генов может нарушаться в процессе кроссинговера; это приводит к образованию рекомбинатных хромосом; частота кроссинговера:

¨ является функцией расстояния между генами: чем больше расстояние, тем больше величина кроссинговера (прямая зависимость);

¨ зависит от силы сцепления между генами: чем сильнее сцеплены гены, тем меньше величина кроссинговера (обратная зависимость);

© каждый вид имеет характерный только для него набор хромосом - кариотип.

40.4. Генетика пола

Как известно, большинство животных и двудомных растений являются раздельнополыми организмами, причем внутри вида количество особей мужского пола приблизительно равно количеству особей женского пола.

Пол можно рассматривать как один из признаков организма. Наследование признаков организма, как правило, определяется генами. Механизм же определения пола имеет иной характер - хромосомный (рис. 328).

Пол чаще всего определяется в момент оплодотворения. У человека женский пол является гомогаметным, то есть все яйцеклетки несут Х-хромосому. Мужской организм - гетерогаметен, то есть образует два типа гамет - 50% гамет несет Х-хромосому и 50% - Y-хромосому. Если

образуется зигота, несущая две Х-хромосомы, то из нее будет формироваться женский организм, если Х-хромосому и Y-хромосому - мужской.

Соотношение полов, близкое к расщеплению 1:1, соответствует расщеплению при анализирующем скрещивании. Поскольку женский организм имеет две одинаковые половые хромосомы, его можно рассматривать как гомозиготный, мужской, образующий два типа гамет - как гетерозиготный.

Из приведенной схемы видно, как происходит формирование в равных количествах двух групп особей, отличающихся набором половых хромосом.

Существует четыре основных типа хромосомного определения пола (рис. 329):

© мужской пол гетерогаметен; 50% гамет несут Х-, 50% -У-хромосому;

© мужской пол гетерогаметен; 50% гамет несут Х-, 50% -не имеют половой хромосомы;

© женский пол гетерогаметен; 50% гамет несут Х-, 50% -У-хромосому;

© женский пол гетерогаметен; 50% гамет несут Х-, 50% - не имеют половой хромосомы.

40.5. Наследование признаков,
сцепленных с полом

Генетические исследования установили, что половые хромосомы отвечают не только за определение пола организма - они, как и аутосомы, содержат гены, контролирующие развитие определенных признаков.

Наследование признаков, гены которых локализованы в Х- или Y-хромосомах, называют наследованием, сцепленным с полом.

Изучением наследования генов, локализованных в половых хромосомах, занимался Т.Морган.

У дрозофилы красный цвет глаз доминирует над белым. Проводя реципрокное скрещивание, Т.Морган получил весьма интересные результаты. При скрещивании красноглазых самок с белоглазыми самцами, в первом поколении все потомство оказывалось красноглазым. Если скрестить между собой гибридов F 1 , то во втором поколении все самки оказываются красноглазыми, а у самцов происходит расщепление - 50% белоглазых и 50% красноглазых. Если же скрестить между собой белоглазых самок и красноглазых самцов, то в первом поколении все самки оказываются красноглазыми, а самцы белоглазыми. В F 2 половина самок и самцов - красноглазые, половина - белоглазые.

Объяснить полученные результаты наблюдаемого расщепления по окраске глаз Т.Морган смог, только предположив, что ген, отвечающий за окраску глаз, локализован в Х-хромосоме, а Y-хромосома таких генов не содержит.

Таким образом, благодаря проведенным скрещиваниям, был сделан очень важный вывод: ген цвета глаз сцеплен с полом, то есть находится в Х-хромосоме.

У человека мужчина получает Х-хромосому от матери. Половые хромосомы человека имеют небольшие гомологичные участки, несущие одинаковые гены (например, ген общей цветовой слепоты), это участки конъюгации (рис. 330). Но большинство генов, сцепленных с Х-хромосомой, отсутствуют в У-хромосоме, поэтому эти гены (даже рецессивные) будут проявляться фенотипически, так как они представлены в генотипе в единственном числе. Такие гены получили название гемизиготных .

Х-хромосома человека содержит ряд генов, рецессивные аллели которых определяют развитие тяжелых аномалий (гемофилия, дальтонизм). Эти аномалии чаще встречаются у мужчин (так как они гетерогаметны), хотя носителем этих аномалий чаще бывает женщина.

У большинства организмов генетически активна только Х-хромосома, в то время как Y-хромосома практически инертна, так как не содержит генов, определяющих признаков организма. У человека лишь некоторые гены, не являющиеся жизненно важными, локализованы в Y-хромосоме (например, гипертрихоз - повышенная волосатость ушной раковины). Гены, локализованные в Y-хромосоме, наследуются особым образом - только от отца к сыну.

Полное сцепление с полом наблюдается лишь в том случае, если Y-хромосома генетически инертна. Если же в Y-хромосоме имеются гены, аллельные генам Х-хромосомы, характер наследования признаков иной. Например, если мать имеет рецессивные гены, а отец доминантные, то все потомки первого поколения будут гетерозиготны с доминантным проявлением признака. В следующем поколении получится обычное расщепление 3:1, причем с рецессивными признаками будут только девочки. Такой тип наследования называют частично сцепленным с полом . Так наследуются некоторые признаки человека (общая цветовая слепота, кожный рак).

40.6. Генотип целостная,
исторически сложившаяся система генов.

Изучая закономерности наследования, Г.Мендель исходил из предположения, что один ген отвечает за развитие только одного признака. Например, ген, отвечающий за развитие окраски семян гороха, не влияет на форму семян. Причем эти гены располагаются в разных хромосомах, и их наследование независимо друг от друга. Поэтому может сложиться впечатление, что генотип представляет собой простую совокупность генов организма. Однако сам Мендель в ряде опытов столкнулся с явлениями наследования, которые не могли быть объяснены с помощью открытых им закономерностей. Так, при изучении наследования окраски семенной кожуры, Мендель обнаружил, что ген, вызывающий образование бурой семенной кожуры, способствует также развитию пигмента и в других частях растения. Растения с бурой семенной кожурой имели цветки фиолетовой окраски, а растения с белой семенной кожурой - белые цветки. В других опытах, проводя скрещивание белой и пурпурной фасоли, он получил во втором поколении целый ряд оттенков - от пурпурного до белого. Мендель пришел к заключению, что наследование пурпурного цвета зависит не от одного, а от нескольких генов, каждый из которых дает промежуточную окраску. Можно говорить о том, что Мендель не только установил законы независимого наследования пар аллелей, но и заложил основы учения о взаимодействии генов.

После переоткрытия законов наследования признаков, многочисленные опыты подтвердили правильность установленных Менделем закономерностей. Вместе с тем, постепенно накапливались и факты, показывающие, что полученные Менделем числовые соотношения при расщеплении гибридного поколения не всегда соблюдались. Это указывало на то, что взаимоотношения между генами и признаками носят более сложный характер. Выяснилось, что:

© один и тот же ген может оказывать влияние на развитие нескольких признаков;

© один и тот же признак может развиваться под влиянием многих генов.

Различают несколько типов взаимодействия аллельных генов:

© Полное доминирование , при котором рецессивный признак не проявляется;

© Неполное доминирование , при котором у гибридов наблюдается промежуточный характер наследования.

© Кодоминирование , в этом случае у гибридов проявляются оба признака. Например, кодоминирование проявляется у людей с 4 группой крови. Первая группа крови у людей с аллелями i O i O , вторая - с аллелями I A I A или I A í 0 ; третья - I В I В или I В í 0 ; четвертая группа имеет аллели I А I В.

Известно много примеров, когда гены влияют на характер проявления определенного неаллельного гена или на саму возможность проявления этого гена.

Комплементарными называют гены, обусловливающие при совместном сочетании в генотипе в гомозиготном или гетерозиготном состоянии новое фенотипическое проявление признака.

Классическим примером комплементарного взаимодействия генов является наследование формы гребня у кур (рис. 331). При скрещивании кур, имеющих розовидный и гороховидный гребень, все первое поколение имеет ореховидный гребень. При скрещивании гибридов первого поколения у потомков наблюдается расщепление по форме гребня: 9 ореховидных: 3 розовидных: 3 гороховидных: 1 листовидный. Генетический анализ показал,

что куры с розовидным гребнем имеют генотип А_bb , с гороховидным - ааВ_ , с ореховидным - А_В_ и с листовидным - ааbb , то есть развитие розовидного гребня происходит в том случае, если в генотипе имеется только один доминантный ген - А , гороховидного - наличие только гена В , сочетание генов А В обусловливает появление ореховидного гребня, а сочетание рецессивных аллелей этих генов - листовидного.

При комплементарном взаимодействии генов в дигибридном скрещивании получаются расщепления потомков отличные от менделевского: 9:7, 9:3:4, 13:3, 12:3:1, 15:1, 10:3:3, 9:6:1. Однако все они являются видоизменениями общей менделевской формулы 9:3:3:1.

Белое оперение определяется несколькими различными генами, например, у белых леггорнов - генамиССII , а у белых плимутроков - ccii (рис. 332). Доминантная аллель гена С определяет синтез предшественника пигмента (хромогена, обеспечивающего окраску пера), а его рецессивная аллель с - отсутствие хромогена. Ген I является подавителем действия гена С , а аллель i не подавляет его действия. Таким образом, белая окраска у кур определяется не наличием особых генов, определяющих развитие этой окраски, а наличием гена, подавляющего ее развитие.

При скрещивании, например, леггорнов (ССII )с плимутроками (ссii ), все потомство F 1 имеет белую окраску, которая определяется наличием в их генотипе гена-подавителя (СсIi ). Если же гибридов F 1 скрестить между собой, то во втором поколении происходит расщепление по окраске в отношении 13/16 белых: 3/16 окрашенных. Окрашенным оказывается та часть потомства, в генотипе которой имеется ген окраски и отсутствует его подавитель (С_ii ).

Скрещивая белую и пурпурную фасоли, Мендель столкнулся с явлением полимерии. Полимерией называют однозначное влияние двух, трех и более неаллельных генов на разви-

тие одного и того же признака. Такие гены называют полимерными , или множественными , и обозначают одной буквой с соответствующим индексом, например, А 1 , А 2 , а 1 , а 2 .

Полимерные гены контролируют большинство оличественных признаков организмов: высоту растения, массу семян, масличность семян, содержание сахара в корнеплодах сахарной свеклы, удойность коров, яйценоскость, вес тела и т.д.

Явление полимерии было открыто в 1908 г. при изучении окраски зерновки у пшеницы Нельсоном-Эле (рис. 333). Он предположил, что наследование окраски у зерновки пшеницы обусловлено двумя или тремя парами полимерных генов. При скрещивании краснозерной и белозерной пшеницы в F 1 наблюдалось промежуточное наследование признака: все гибриды первого поколения имели светло-красное зерно. В F 2 происходило расщепление в отношении 63 краснозерных на 1 белозерное. Причем краснозерные зерновки имели разную интенсивность окраски - от темно-красной до светло-красной. Исходя из наблюдений, Нельсоном-Эле определил, что признак окраски зерновок обуславливает три пары полимерных генов.

У человека по типу полимерии наследуется, например, окраска кожи.

Плейотропией называют множественное действие генов. Плейотропное действие генов имеет биохимическую природу: один белок-фермент, образующийся под контролем одного гена, определяет не только развитие данного признака,нои воздействует на вторичные реакции биосинтеза различных других признаков и свойств, вызывая их изменение.

Плейотропное действие генов впервые было обнаружено Г. Менделем, который обнаружил, что у растений с пурпурными цветками всегда имелись красные пятна в пазухах листьев, а семенная кожура была серого или бурого цвета. То есть развитие этих признаков определяется действием одного наследственного фактора (гена).

У человека встречается рецессивная наследственная болезнь-серповидно-клеточная анемия. Первичным дефектом этой болезни является замена одной из аминокислот в молекуле гемоглобина, что приводит к изменению формы эритроцитов. Одновременно с этим возникают глубокие нарушения в сердечно-сосудистой, нервной, пищеварительной, выделительной системах. Это приводит к тому, что гомозиготный по этому заболеванию погибает в детстве.

Плейотропия широко распространена. Изучение действия генов показало, что плейотропным эффектом, очевидно, обладают многие, если не все, гены.

Таким образом, выражение «ген определяет развитие признака» в значительной степени условно, так как действие гена зависит от других генов - от генотипической среды. На проявление действия генов влияют и условия окружающей внешней среды. Следовательно, генотип является системой взаимодействующих генов.

Генетика человека

Каждый крупный этап развития генетики был связан с использованием определенных объектов для генетических исследований. Теория гена и основные закономерности наследования признаков были установлены на опытах с горохом, для обоснования хромосомной теории наследственности использовалась мушка дрозофила, для становления молекулярной генетики - вирусы и бактерии. В настоящее время главным объектом генетических исследований становится человек.

Для генетических исследований человек является очень неудобным объектом, так как у человека:

© большое количество хромосом;

© невозможно экспериментальное скрещивание;

© поздно наступает половая зрелость;

© малое число потомков в каждой семье;

© невозможно уравнивание условий жизни для потомства.

Однако, несмотря на эти трудности, генетика человека достаточно хорошо изучена. Это оказалось возможным благодаря использованию разнообразных методов исследования.

Генеалогический метод. Использование этого метода возможно лишь в том случае, когда известны прямые родственники - предки обладателя наследственного признака (пробанда) по материнской и отцовской линиям в ряду поколений или потомки пробанда также в нескольких поколениях. При составлении родословных в генетике используется определенная система обозначений (рис. 334). После составления родословной проводится ее анализ с

целью установления характера наследования изучаемого признака.

Благодаря генеалогическому методу, было установлено, что у человека наблюдаются все типы наследования признаков, известные для других организмов, и определены типы наследования некоторых конкретных признаков. Так, по ауто сомно-доминантному типу наследуются полидактилия (увеличенное количество пальцев) (рис. 335), возможность свертывать язык в трубочку (рис. 336), брахидактилия (короткопалось, обусловленная отсутствием двух фаланг на пальцах), веснушки, раннее облысение, сросшиеся пальцы, заячья губа, волчья пасть, катаракта глаз, хрупкость костей и многие другие. Альбинизм, рыжие волосы, подверженность полиомиелиту, сахарный диабет, врожденная глухота и другие признаки наследуются как аутосомно-рецессивные.

Целый ряд признаков наследуется сцепленно с полом: Х-сцепленное наследование - гемофилия, дальтонизм; У-сцепленное - гипертрихоз (повышенного оволосения ушной раковины), перепонки между пальцами. Имеется ряд генов, лока-

лизованных в гомологичных участках Х- и У-хромосомы, например общая цветовая слепота.

Установлением типа наследования признаков значение метода не ограничивается. Использование генеалогического метода показало, что при родственном браке, по сравнению с неродственным, значительно возрастает вероятность появления уродств, мертворождений, ранней смертности в потомстве. В родственных браках рецессивные гены чаще переходят в гомозиготное состояние, в результате развиваются те или иные аномалии. Ярким примером этого является наследование гемофилии в царских домах Европы.

Большую роль в изучении наследственности человека и влиянии условий среды на формирование признаков играет близнецовый метод .

Близнецами называют одновременно родившихся детей. Они бывают монозиготными (однояйцевыми) и дизиготными (разнояйцевыми) (рис. 337).

Монозиготные близнецы развиваются из одной зиготы, которая на стадии дробления разделилась на две (или более) частей. Поэтому такие близнецы генетически идентичны и всегда одного пола. Монозиготные близнецы характеризуются большой степенью сходства (конкордантностью ) по многим признакам.


Дизиготные близнецы развиваются из одновременно овулировавших и оплодотворенных разными сперматозоидами яйцеклеток. Поэтому они наследственно различны и могут быть как одного, так и или разного пола. В отличие от монозиготных, дизиготные близнецы часто характеризуются дискордантностью - несходством по многим признакам. Данные о конкордантности близнецов по некоторым признакам приведены в таблице.

Таблица 9.

Конкордантность некоторых признаков человека

Как видно из таблицы, степень коркондантности монозиготных близнецов по всем приведенным признакам значительно выше, чем у дизиготных, однако она не является абсолютной. Как правило, дискордантность однояйцевых близнецов возникает в результате нарушений внутриутробного развития одного из них или под влиянием внешней среды, если она была разной.

Благодаря близнецовому методу, была выяснена наследственная предрасположенность человека к ряду заболеваний: шизофрении, умственной отсталости, эпилепсии, сахарного диабета и других.

Наблюдения за однояйцевыми близнецами дают материал для выяснения роли наследственности и среды в развитии признаков. Причем под внешней средой понимают не только физические факторы среды, но и

социальные условия.

Цитогенетический метод основан на изучении хромосом человека в норме и при патологии. В норме кариотип человека включает 46 хромосом - 22 пары аутосом и две половые хромосомы. Использование данного метода позволило выявить группу болезней, связанных либо с изменением числа хромосом, либо с изменениями их структуры. Такие болезни получили название хромосомных. К их числу относятся: синдром Клайнфельтера, синдром Шерешевского-Тернера, трисомия Х, синдром Дауна, синдром Патау, синдром Эдвардса и другие.

Больные с синдромом Клайнфельтера (47,ХХУ) всегда мужчины. Они характеризуются недоразвитием половых желез, дегенерацией семенных канальцев, часто умственной отсталостью, высоким ростом (за счет непропорционально длинных ног).

Синдром Шерешевского-Тернера (45,Х0) наблюдается у женщин. Он проявляется в замедлении полового созревания, недоразвитии половых желез, аменорее (отсутствии менструаций), бесплодии. Женщины с синдромом Шерешевского-Тернера имеют малый рост, тело диспропорционально - более развита верхняя часть тела, плечи широкие, таз узкий - нижние конечности укорочены, шея короткая со складками, "монголоидный" разрез глаз и ряд других признаков.

Синдром Дауна - одна из самых часто встречающихся хромосомных болезней. Она развивается в результате трисомии по 21 хромосоме (47, 21,21,21). Болезнь легко диагностируется, так как имеет ряд характерных признаков: укороченные конечности, маленький череп, плоское, широкое переносье, узкие глазные щели с косым разрезом, наличие складки верхнего века, психическая отсталость. Часто наблюдаются и нарушения строения внутренних органов.

Хромосомные болезни возникают и в результате изменения самих хромосом. Так, делеция 5-й хромосомы приводит к развитию синдрома "крик кошки". У детей с этим синдромом нарушается строение гортани, и они в раннем детстве имеют своеобразный "мяукающий" тембр голоса. Кроме того, наблюдается отсталость психомоторного развития и слабоумие. Делеция 21 хромосомы приводит к возникновению одной из форм белокровия.

Чаще всего хромосомные болезни являются результатом мутаций, произошедших в половых клетках одного из родителей.

Биохимический метод позволяет обнаружить нарушения в обмене веществ, вызванные изменением генов и, как следствие, изменением активности различных ферментов. Наследственные болезни обмена веществ подразделяются на болезни углеводного обмена (сахарный диабет), обмена аминокислот, липидов, минералов и др.

Фенилкетонурия относится к болезням аминокислотного обмена. Блокируется превращение незаменимой аминокислоты фенилаланин в тирозин, при этом фенилаланин превращается в фенилпировиноградную кислоту, которая выводится с мочой. Заболевание приводит к быстрому развитию слабоумия у детей. Ранняя диагностика и диета позволяют приостановить развитие заболевания.

Генетика человека - одна из наиболее интенсивно развивающихся отраслей науки. Она является теоретической основой медицины, раскрывает биологические основы наследственных заболеваний. Знание генетической природы заболеваний позволяет вовремя поставить точный диагноз и осуществить нужное лечение.

Генетика популяций

Популяция - это совокупность особей одного вида, длительное время обитающих на определенной территории, свободно скрещивающихся друг с другом, имеющих общее происхождение, определенную генетическую структуру и в той или иной степени изолированных от других таких совокупностей особей данного вида. Популяция не только единица вида, форма его существования, но и единица эволюции. В основе микроэволюционных процессов, завершающихся видообразованием, лежат генетические преобразования в популяциях.

Изучением генетической структуры и динамики популяций занимается особый раздел генетики - популяционная генетика .

С генетической точки зрения, популяция является открытой системой, а вид - закрытой. В общей форме процесс видообразования сводится к преобразованию генетически открытой системы в генетически закрытую.

Каждая популяция имеет определенный генофонд и генетическую структуру. Генофондом популяции называют совокупность генотипов всех особей популяции. Под генетической структурой популяции понимают соотношение в ней различных генотипов и аллелей.

Одними из основных понятий популяционной генетики являются частота генотипа и частота аллеля. Под частотой генотипа (или аллеля ) понимают его долю, отнесенную к общему количеству генотипов (или аллелей) в популяции. Частота генотипа, или аллеля, выражается либо в процентах, либо в долях единицы (если общее количество генотипов или аллелей популяции принимается за 100% или 1). Так, если ген имеет две аллельные формы и доля рецессивного аллеля а составляет ¾ (или 75%), то доля доминантного аллеля А будет равна ¼ (или 25%) общего числа аллелей данного гена в популяции.

Большое влияние на генетическую структуру популяций оказывает способ размножения. Например, популяции самоопыляющихся и перекрестноопыляющихся растений существенно отличаются друг от друга.

Впервые исследование генетической структуры популяции было предпринято В.Иоганнсеном в 1903 г. В качестве объектов исследования были выбраны популяции самоопыляющихся растений. Исследуя в течение нескольких поколений массу семян у фасоли, он обнаружил, что у самоопылителей популяция состоит из генотипически разнородных групп, так называемых чистых линий , представленных гомозиготными особями. Причем из поколения в поколение в такой популяции сохраняется равное соотношение гомозиготных доминантных и гомозиготных рецессивных генотипов. Их частота в каждом поколении увеличивается, в то время как частота гетерозиготных генотипов будет уменьшаться. Таким образом, в популяциях самоопыляющихся растений наблюдается процесс гомозиготизации, или разложения на линии с различными генотипами.

Большинство растений и животных в популяциях размножаются половым путем при свободном скрещивании, обеспечивающем равновероятную встречаемость гамет. Равновероятную встречаемость гамет при свободном скрещивании называют панмиксией , а такую популяцию - панмиктической .

Харди и Вайнберг, суммируя данные о частоте генотипов, образующихся в результате равновероятной встречаемости гамет, вывели формулу частоты генотипов в панмиктической популяции:

P 2 + 2pq + q 2 = 1.

АА + 2Аа + аа = 1

Однако действие этого закона выполняется при соблюдении следующих условий:

© неограниченно большая численность популяции;

© все особи могут свободно скрещиваться друг с другом;

© все генотипы одинаково жизнеспособны, плодовиты и не подвергаются отбору;

© прямые и обратные мутации возникают с одинаковой частотой или настолько редко, что ими можно пренебречь;

© отток или приток новых генотипов в популяцию отсутствует.

В реально существующих популяциях выполнение этих условий невозможно, поэтому закон справедлив только для идеальной популяции. Несмотря на это, закон Харди-Вайнберга является основой для анализа некоторых генетических явлений, происходящих в природных популяциях. Например, если известно, что фенилкетонурия встречается с частотой 1:10000 и наследуется по аутосомно-рецессивному типу, можно посчитать частоту встречаемости гетерозигот и гомозигот по доминантному признаку. Больные фенилкетонурией имеют генотип q 2 (аа) = 0,0001. Отсюда q = 0,01. p = 1 - 0,01 = 0,99. Частота встречаемости гетерозигот равна 2pq , равна 2 х 0,99 х 0,01 ≈ 0,02 или около 2%. Частота встречаемости гомозигот по доминантному и рецессивному признакам: АА = p 2 = 0,99 2 ≈ 98%, аа = 0,01%.

Изменение равновесия генотипов и аллелей в панмиктической популяции происходит под влиянием постоянно действующих факторов, к которым относятся:

© мутационный процесс;

© популяционные волны;

© изоляция;

© естественный отбор;

© дрейф генов и другие.

Именно благодаря этим явлениям возникает элементарное эволюционное явление - изменение генетического состава популяции, являющееся начальным этапом процесса видообразования.

Изменчивость

Генетика изучает не только наследственность, но и изменчивость организмов. Изменчивостью называют способность живых организмов приобретать новые признаки и свойства. Благодаря изменчивости, организмы могут приспосабливаться к изменяющимся условиям среды обитания.

Различают два типа изменчивости:

© наследственную , или генотипическую , - изменения признаков организма, обусловленные изменением генотипа; она бывает:

¨ комбинативной - возникающей в результате перекомбинации хромосом в процессе полового размножения и участков хромосом в процессе кроссинговера;

¨ мутационной - возникающей в результате внезапного изменения состояния генов;

© ненаследственную , или фенотипическую , - изменчивость, при которой изменений генотипа не происходит.

Мутационная изменчивость

Наследственные изменения генетического материала теперь называют мутациями. Мутации - внезапные изменения генетического материала, приводящие к изменению тех или иных признаков организмов.

Термин "мутация" впервые ввел в науку голландский генетик Г. де-Фриз. Проводя опыты с энотерой (декоративное растение), он случайно обнаружил экземпляры, отличающиеся рядом признаков от остальных (большой рост, гладкие, узкие и длинные листья, красные жилки листьев и широкая красная полоса на чашечке цветка и т.д.). Причем при семенном размножении растения из поколения в поколение стойко сохраняли эти признаки. В результате обобщения своих наблюдений де-Фриз создал мутационную теорию, основные положения которой не утратили своего значения и по сей день:

© мутации возникают внезапно, скачкообразно, без всяких переходов;

© мутации наследственны, т.е. стойко передаются из поколения в поколение;

© мутации не образуют непрерывных рядов, не группируются вокруг среднего типа (как при модификационной изменчивости), они являются качественными изменениями;

© мутации ненаправленны - мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков в любом направлении;

© одни и те же мутации могут возникать повторно;

© мутации индивидуальны, то есть возникают у отдельных особей.

Процесс возникновения мутаций называют мутагенез , организмы, у которых произошли мутации, - мутантами , а факторы среды, вызывающие появление мутаций, - мутагенными .

Способность к мутированию - одно из свойств гена. Каждая отдельная мутация вызывается какой-то причиной, как правило, связанной с изменениями во внешней среде.

Существует несколько классификаций мутаций:

© Мутации по месту их возникновения:

¨ Генеративные - возникшие в половых клетках. Они не влияют на признаки данного организма, а проявляются только в следующем поколении.

¨ Соматические - возникающие в соматических клетках. Эти мутации проявляются у данного организма и не передаются потомству при половом размножении (черное пятно на фоне коричневой окраски шерсти у каракулевых овец). Сохранить соматические мутации можно только путем бесполого размножения (прежде всего вегетативного).

© Мутации по адаптивному значению:

¨ Полезные - повышающие жизнеспособность особей.

¨ Вредные :

§ летальные - вызывающие гибель особей;

§ полулетальные - снижающие жизнеспособность особи (у мужчин рецессивный ген гемофилии носит полулетальный характер, а гомозиготные женщины оказываются нежизнеспособными).

¨ Нейтральные - не влияющие на жизнеспособность особей.

Эта классификация весьма условна, так как одна и та же мутация в одних условиях может быть полезной, а в других - вредной.

© Мутации по характеру проявления:

¨ доминантные , которые могут делать обладателей этих мутаций нежизнеспособными и вызывать их гибель на ранних этапах онтогенеза (если мутации являются вредными);

¨ рецессивные - мутации, не проявляющиеся у гетерозигот, поэтому длительное время сохраняющиеся в популяции и образующие резерв наследственной изменчивости (при изменении условий среды обитания носители таких мутаций могут получить преимущество в борьбе за существование).

© Мутации по степени фенотипического проявления:

¨ крупные - хорошо заметные мутации, сильно изменяющие фенотип (махровость у цветков);

¨ малые - мутации, практически не дающие фенотипического проявления (незначительное удлинение остей у колоса).

© Мутации по изменению состояния гена:

¨ прямые - переход гена от дикого типа к новому состоянию;

¨ обратные - переход гена от мутантного состояния к дикому типу.

© Мутации по характеру их появления:

¨ спонтанные - мутации, возникшие естественным путем под действием факторов среды обитания;

¨ индуцированные - мутации, искусственно вызванные действием мутагенных факторов.

© Мутации по характеру изменения генотипа:

¨ генны;

¨ хромосомные;

¨ геномные .

Генными мутациями называют изменения структуры молекулы ДНК на участке определенного гена, кодирующего структуру определенной молекулы белка. Эти мутации влекут за собой изменение строения белков, то есть появляется новая последовательность аминокислот в полипептидной цепи, в результате чего происходит изменение функциональной активности белковой молекулы. Благодаря генным мутациям происходит возникновение серии множественных аллелей одного и того же гена. Чаще всего генные мутации происходят в результате:

© замены одного или нескольких нуклеотидов на другие;

© вставки нуклеотидов;

© потери нуклеотидов;

© удвоения нуклеотидов;

© изменения порядка чередования нуклеотидов.

Хромосомные мутации

Хромосомные мутации - мутации, вызывающие изменения структуры хромосом. Они возникают в результате разрыва хромосом с образованием "липких" концов, "Липкие" концы - это одноцепочечные фрагменты на концах двухцепочечной молекулы ДНК. Эти фрагменты способны соединяться с другими фрагментами хромосом, также имеющих "липкие" концы. Перестройки могут осуществляться как в пределах одной хромосомы - внутрихромосомные мутации, так и между негомологичными хромосомами - межхромосомные мутации.

© Внутрихромосомные мутации:

¨ делеция - утрата части хромосомы (АВСD ® AB);

¨ инверсия - поворот участка хромосомы на 180˚(ABCD ® ACBD);

¨ дупликация - удвоение одного и того же участка хромосомы; (ABCD ® ABCBCD);

© Межхромосомные мутации:

¨ транслокация - обмен участками между негомологичными хромосомами (АВCD ® AB34).

Геномные мутации

Геномными называют мутации, в результате которых происходит изменение в клетке числа хромосом. Геномные мутации возникают в результате нарушения митоза или мейоза, приводящих либо к неравномерному расхождению хромосом к полюсам клетки, либо к удвоению хромосом, но без деления цитоплазмы.

В зависимости от характера изменения числа хромосом, различают:

¨ Гаплоидию - уменьшение числа полных гаплоидных наборов хромосом.

¨ Полиплоидию - увеличение числа полных гаплоидных наборов хромосом. Полиплоидия чаще наблюдается у простейших и у растений. В зависимости от числа гаплоидных наборов хромосом, содержащихся в клетках, различают: триплоиды (3n), тетраплоиды (4n) и т.д. Они могут быть:

§ автополиплоидами - полиплоидами, возникающими в результате умножения геномов одного вида;

§ аллополиплоидами - полиплоидами, возникающими в результате умножения геномов разных видов (характерно для межвидовых гибридов).

¨ Гетероплоидию (анеуплоидия ) - некратное увеличение или уменьшение числа хромосом. Чаще всего наблюдается уменьшение или увеличение числа хромосом на одну (реже две и более). Вследствие нерасхождения какой-либо пары гомологичных хромосом в мейозе одна из образовавшихся гамет содержит на одну хромосому меньше, а другая - на одну больше. Слияние таких гамет с нормальной гаплоидной гаметой при оплодотворении приводит к образованию зиготы с меньшим или большим числом хромосом по сравнению с диплоидным набором, характерным для данного вида. Среди анеуплоидов встречаются:

§ трисомики - организмы с набором хромосом 2n+1;

§ моносомики - организмы с набором хромосом 2n -1;

§ нулесомики - организмы с набором хромосом 2n –2.

Например, болезнь Дауна у человека возникает в результате трисомии по 21-й паре хромосом.

Н.И. Вавилов, изучая наследственную изменчивость у культурных растений и их предков, обнаружил ряд закономерностей, которые позволили сформулировать закон гомологических рядов наследственной изменчивости: «Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости. Целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство».

Этот закон можно проиллюстрировать на примере семейства Мятликовые, к которому относятся пшеница, рожь, ячмень, овес, просо и т.д. Так, черная окраска зерновки обнаружена у ржи, пшеницы, ячменя, кукурузы и других растений, удлиненная форма зерновки - у всех изученных видов семейства. Закон гомологических рядов в наследственной изменчивости позволили самому Н.И.Вавилову найти ряд форм ржи, ранее не известных, опираясь на наличие этих признаков у пшеницы. К ним относятся: остистые и безостые колосья, зерновки красной, белой, черной и фиолетовой окраски, мучнистое и стекловидное зерно и т.д.

Открытый Н.И.Вавиловым закон справедлив не только для растений, но и для животных. Так, альбинизм встречается не только в разных группах млекопитающих, но и птиц, и других животных. Короткопалость наблюдается у человека, крупного рогатого скота, овец, собак, птиц, отсутствие перьев у птиц, чешуи у рыб, шерсти у млекопитающих и т.д.

Закон гомологических рядов наследственной изменчивости имеет огромное значение для селекционной практики. Он позволяет предугадать наличие форм, не обнаруженных у данного вида, но характерного для близкородственных видов, то есть закон указывает направление поисков. Причем искомая форма может быть обнаружена в дикой природе или получена путем искусственного мутагенеза. Например, в 1927 г. немецкий генетик Э.Баур, исходя из закона гомологических рядов, высказал предположение о возможном существовании безалкалоидной формы люпина, которую можно было бы использовать на корм животным. Однако такие формы не были известны. Было высказано предположение, что безалкалоидные мутанты менее устойчивы к вредителям, чем растения горького люпина, и большая их часть погибает еще до цветения.

Опираясь на эти предположения, Р.Зенгбуш начал поиски безалкалоидных мутантов. Он исследовал 2,5 млн. растений люпина и выявил среди них 5 растений с низким содержанием алкалоидов, которые явились родоначальниками кормового люпина.

Более поздние исследования показали действие закона гомологических рядов на уровне изменчивости морфологических, физиологических и биохимических признаков самых разных организмов - от бактерий до человека.

В природе постоянно идет спонтанный мутагенез. Однако спонтанные мутации - редкое явление. Например, у дрозофилы мутация белых глаз образуется с частотой 1:100000 гамет, у человека многие гены мутируют с частотой 1:200000 гамет.

В 1925 г. Г.А.Надсон и Г.С.Филиппов открыли мутагенный эффект лучей радия на наследственную изменчивость у клеток дрожжей. Особое значение для развития искусственного мутагенеза имели работы Г.Меллера (1927), которые не только подтвердили мутагенный эффект лучей радия в опытах на дрозофилах, но и показали, что облучение увеличивает частоту мутаций в сотни раз. В 1928 г. Л.Стадлер использовал для получения мутаций рентгеновские лучи. Позже был доказан и мутагенный эффект химических веществ. Эти и другие эксперименты показали существование большого количества факторов, называемых мутагенными , способных вызывать мутации у различных организмов.

Все применяемые для получения мутаций мутагены делятся на две группы:

© физические - радиация, высокая и низкая температура, механическое воздействие, ультразвук;

© химические - различные органические и неорганические соединения: кофеин, иприт, соли тяжелых металлов, азотистая кислота и т.д.

Индуцированный мутагенез имеет большое значение. Он дает возможность создания ценного исходного материала для селекции, сотен высокопродуктивных сортов растений и пород животных, повышения в 10-20 раз продуктивности ряда продуцентов биологически активных веществ, а также раскрывает пути создания средств защиты человека от действия мутагенных факторов.

Модификационная изменчивость

Большую роль в формировании признаков организмов играет среда его обитания. Каждый организм развивается и обитает в определенной среде, испытывая на себе действие ее факторов, способных изменять морфологические и физиологические свойства организмов, т.е. ихфенотип.

Классическим примером изменчивости признаков под действием факторов внешней среды является разнолистность у стрелолиста: погруженные в воду листья имеют лентовидную форму, листья, плавающие на поверхности воды, - округлую, а находящиеся в воздушной среде, - стреловидные. Если же все растение оказывается полностью погруженным в воду, его листья только лентовидные. Некоторые виды саламандр темнеют на темном грунте и светлеют на светлом. Под действием ультрафиолетовых лучей у людей (если они не альбиносы) возникает загар в результате накопления в коже меланина, причем у разных людей интенсивность окраски кожи различна. Если же человек лишен действия ультрафиолетовых лучей, изменение окраски кожи у него не происходит.

Таким образом, изменения ряда признаков организмов вызывается действием факторов внешней среды. Причем эти изменения не наследуются. Так, если получить потомство от тритонов, выращенных на темном грунте, и поместить их на светлый, то все они будут иметь светлую окраску, а не темную, как их родители. Или, собрав семена со стрелолиста, выросшего в условиях полного погружения в воду, и высадив их в мелком водоеме, мы получим растения, листья которых будут иметь форму в зависимости от условий среды (лентовидные, округлые, стреловидные). То есть, данный вид изменчивости не затрагивает генотип и поэтому не передается потомкам.

Изменчивость организмов, возникающая под влиянием факторов внешней среды и не затрагивающая генотипа, называется модификационной .

© Модификационная изменчивость носит групповой характер , то есть все особи одного вида, помещенные в одинаковые условия, приобретают сходные признаки. Например, если сосуд с эвгленами зелеными поместить в темноту, то все они утратят зеленую окраску, если же вновь выставить на свет - все опять станут зелеными.

© Модификационная изменчивость является определенной , то есть всегда соответствует факторам, которые ее вызывают. Так, ультрафиолетовые лучи изменяют окраску кожи человека (так как усиливается синтез пигмента), но не изменяют пропорций тела, а усиленные физические нагрузки влияют на степень развития мышц, а не на цвет кожи.

Однако не следует забывать, что развитие любого признака определяется прежде всего генотипом. Вместе с тем, гены определяют возможность развития признака, а его появление и степень выраженности во много м определяется условиями среды. Так, зеленая окраска растений зависит не только от генов, контролирующих синтез хлорофилла, но и от наличия света. При отсутствии света хлорофилл не синтезируется.

Несмотря на то, что под влиянием условий внешней среды признаки могут изменяться, эта изменчивость не беспредельна. Даже в случае нормального развития признака степень его выраженности различна. Так, на поле пшеницы можно обнаружить растения с крупными колосьями (20 см и более) и очень мелкими (3-4 см). Это объясняется тем, что генотип определяет определенные границы, в пределах которых может происходить изменение признака. Степень варьирования признака, или пределы модификационной изменчивости, называют нормой реакции. Норма реакции выражается в совокупности фенотипов организмов, формирующихся на основе определенного генотипа под влиянием различных факторов среды. Как правило, количественные признаки (высота растений, урожайность, размер листьев, удойность коров, яйценоскость кур) имеют более широкую норму реакции, то есть могут изменяться в широких пределах, нежели качественные признаки (цвет шерсти, жирность молока, строение цветка, группа крови).

Знание нормы реакции имеет большое значение для практики сельского хозяйства

Таким образом, модификационная изменчивость характеризуется следующими основными свойствами:

© ненаследуемость;

© групповой характер изменений;

© соответствие изменений действию фактора среды;

Статистические закономерности модификационной изменчивости

© зависимость пределов изменчивости от генотипа.

Модификационная изменчивость многих признаков растений, животных и человека подчиняется общим закономерностям. Эти закономерности выявляются на основании анализа проявления признака у группы особей (n ). Степень выраженности изучаемого признака у членов выборочной совокупности различна.

© Каждое конкретное значение изучаемого признака называют вариантой и обозначают буквой v.

© При изучении изменчивости признака в выборочной совокупности составляется вариационный ряд , в котором особи располагаются по возрастанию показателя изучаемого признака.

© Частота встречаемости отдельных вариант обозначается буквой p .

Рис. 338. Вариационная кривая.
На основании вариационного ряда строится вариационная кривая - графическое отображение частоты встречаемости каждой варианты (рис. 338).

Например, если взять 100 колосьев пшеницы (n ) и подсчитать число колосков в колосе, то это количество будет от 14 до 20 - это численное значение вариант (v ).

Вариационный ряд:

v = 14 15 16 17 18 19 20

Частота встречаемости каждой варианты

p = 2 7 22 32 24 8 5

Среднее значение признака встречается чаще, а вариации, значительно отличающиеся от него, - значительно реже. Это называется нормальным распределением . Кривая на графике бывает, как правило, симметричной. Вариации, как большие, чем средние, так и меньшие, встречаются одинаково часто.

где М - средняя величина признака, в числителе сумма произведений вариант на их частоту встречаемости, в знаменателе - количество вариант. Для данного признака среднее значение равно 17,13.

Знание закономерностей модификационной изменчивости имеет большое практическое значение, поскольку позволяет предвидеть и заранее планировать степень выраженности многих признаков организмов в зависимости от условий внешней среды.

Биологической основой третьего закона Менделя является независимое расхождение хромосом при мейозе. Поэтому третий закон верен только для генов, находящихся в разных хромосомах.

Если гены находятся в одной хромосоме, то они не могут разойтись независимо друг от друга, поэтому наследуются вместе (сцеплено) - это закон сцепления (закон Моргана).Все гены, находящиеся в одной хромосоме, образуют группу сцепления.

При полном сцеплении (встречается, например, у самцов дрозофил) дигетерозигота образует только два типа гамет.

Гораздо чаще встречается неполное сцепление, когда из-за кроссинговера при мейозе происходит обмен участками хромосом. Тогда дигетерозигота образует 4 типа гамет в неравном соотношении: большую часть составляют гаметы с группой сцепления, меньшую - рекомбинантные гаметы.

Доля рекомбинантных гамет зависит от расстояния между генами в хромосоме, измеряется в условных единицах морганидах. Фраза «расстояние между генами А и В равняется 10 морганид» означает, что рекомбинантных гамет получится в сумме 10% (5%+5%), а нормальных - 90% (45% и 45%).

Тесты

1. При скрещивании мух дрозофил с серым телом и нормальными крыльями и дрозофил с темным телом и зачаточными крыльями проявляется закон сцепленного наследования, следовательно, эти гены расположены в
А) разных хромосомах и сцеплены
Б) одной хромосоме и сцеплены
В) одной хромосоме и не сцеплены
Г) разных хромосомах и не сцеплены

2. Если гены расположены в разных парах негомологичных хромосом, то проявляется закон
А) неполного доминирования
Б) полного доминирования
В) независимого наследования
Г) расщепления признаков

3. Если гены, ответственные за окраску и форму семян гороха, расположены в разных хромосомах, то во втором поколении проявляется закон
А) независимого наследования
Б) сцепленного наследования
В) расщепления признаков
Г) доминирования

4. Количество групп сцепления генов у организмов зависит от числа
А) пар гомологичных хромосом
Б) аллельных генов
В) доминантных генов
Г) молекул ДНК в ядре клетки

5. Если гены, отвечающие за развитие нескольких признаков, расположены в одной хромосоме, то проявляется закон
А) расщепления
Б) сцепленного наследования
В) неполного доминирования
Г) независимого наследования

6. "Гены, расположенные в одной хромосоме, наследуются совместно" - это формулировка закона
А) взаимодействия генов
Б) сцепленного наследования
В) независимого наследования
Г) гомологических рядов изменчивости

7. Какой закон проявляется при скрещивании дигетерозиготных организмов, у которых гены, например А и В, расположены в негомологичных хромосомах?
А) полного доминирования
Б) неполного доминирования
В) независимого наследования
Г) сцепленного наследования

8. Всегда наследуются вместе гены
А) рецессивные
Б) аллельные
В) доминантные
Г) тесно сцепленные

9. При скрещивании дрозофил с серым телом и нормальными крыльями и дрозофил с темным телом и зачаточными крыльями проявляется закон сцепленного наследования, так как отвечающие за эти признаки гены расположены в
А) ДНК митохондрий
Б) разных парах хромосом
В) одной паре хромосом
Г) половых хромосомах

10. Какой закон проявится при скрещивании, если гены расположены в одной хромосоме?
А) расщепления признаков
Б) сцепленного наследования
В) независимого наследования
Г) гомологических рядов

11. Согласно закону Т. Моргана гены наследуются преимущественно вместе, если они расположены в
А) аутосоме
Б) половых хромосомах
В) одной хромосоме
Г) разных гомологичных хромосомах

Вопрос 1. Что такое сцепленное наследование?
Сцепленное наследование - это совместное наследование генов, находящихся в одной хромосоме (т. е. в одной молекуле ДНК). Например, у душистого горошка гены, определяющие окраску цветков и форму пыльцы, расположены именно таким образом. Они наследуются сцепленно, поэтому при скрещивании у гибридов второго поколения образуются родительские фенотипы в соотношении 3:1, а расщепление 9:3:3:1, характерное для дигибридного скрещивания при независимом наследовании, не проявляется.
При сцепленном наследовании сила сцепления может быть разной. При полном сцеплении в потомстве гибрида появляются организмы только с родительскими сочетаниями признаков, а рекомбинанты отсутствуют. При неполном сцеплении всегда наблюдается в той или иной мере преобладание форм с родительскими признаками. Величина кроссинговера, отражающая силу сцепления между генами, измеряется отношением числа рекомбинантов к общему числу в потомстве от анализирующего скрещивания и выражается в процентах.
Гены расположены в хромосомах линейно, а частота кроссинговера отражает относительное расстояние между ними. За единицу расстояния между двумя генами условно принимают 1% перекреста между ними - эту величину называют морганидой.
Чем дальше друг от друга расположены два гена в хромосомах, тем больше вероятности, что между ними произойдет кроссинговер. Следовательно, по частоте кроссинговера между генами можно судить об относительном расстоянии, разделяющим гены в хромосоме, при этом гены в хромосоме расположены в линейном порядке.
Каждая хромосома в кариотипе человека несет в себе множество генов, которые могут наследоваться совместно.

Вопрос 2. Что представляют собой группы сцепления генов?
Явление совместного наследования генов было впервые описано Пеннетом, назвавшим это явление “притяжением генов”. Томас Хант Морган и его сотрудники подробно изучили явление сцепленного наследования генов и вывели законы сцепленного наследования (1910). Группа сцепления – это совокупность генов, локализованных в одной хромосоме. Число групп сцеплений для каждого вида равно гаплоидному набору хромосом, а точнее – равно количеству пар гомологичный хромосом. У человека половая пара хромосом негомологична, поэтому у женщин групп сцепления – 23, а у мужчин – 24 (22 группы сцепления - аутосомные и две по половым хромосомам Х и У). У гороха 7 групп сцепления (2n = 14), у дрозофилы - 4 группы сцепления (2n = 8).

Вопрос 3. Что является причиной нарушения сцепления генов?
Причиной нарушения сцепления генов является обмен участками гомологичных хромосом в профазе I мейотического деления. Напомним, что на этом этапе парные хромосомы конъюгируют, образуя так называемые биваленты. Формирование бивалентов может привести к перекресту хромосом, что создает возможность обмена гомологичными участками ДНК. Если это происходит, то группы сцепления меняют свое содержание (в них оказываются иные аллели тех же генов) и в потомстве могут появиться особи с фенотипом, отличающимся от родительских.

Вопрос 4. Каково биологическое значение обмена аллельными генами между гомологичными хромосомами?
Кроссинговер – обмен идентичными участками между гомологичными хромосомами, приводящий к рекомбинации наследственных задатков и формированию новых сочетаний генов в группах сцепления.
Перекрест хромосом приводит к перекомбинированию генетического мтериала и формированию новых сочетаний аллелей генов из группы сцепления. При этом увеличивается разнообразие потомков, т. е. повышается наследственная изменчивость, что имеет большое эволюционное значение. Действительно, если, например, у дрозофилы гены, определяющие окраску тела и длину крыльев, находятся на одной хромосоме, то, скрещивая чистые линии серых мух с нормальными крыльями и черных мух с укороченными крыльями, в отсутствие крос-синговера мы никогда не получим иные фенотипы. Существование же перекреста хромосом позволяет появиться (в нескольких процентах случаев) серым мухам с короткими крыльями и черным мухам с нормальными крыльями.

Вопрос 5. Подтверждена ли цитологически теория сцепленного наследования?
Теория сцепленного наследования Томаса Ханта Моргана (1866-1945) подтверждена цитологическими наблюдениями. Было показано, что хромосомы при делении целиком расходятся к разным полюсам клетки. Следовательно, гены, расположенные на одной хромосоме, при мейозе попадают в одну гамету, т.е. действительно наследуются сцепленно.

Явление сцепленного наследования и его цитологические основы

Замечание 1

Закон независимого комбинирования генов основывается на тех положениях, что гены, определяющие те или иные черты и признаки, локализованы в гомологических хромосомах, а гены, кодирующие разные черты находятся в разных хромосомах. Но количество признаков намного превышает количество хромосом в живых организмах. Из этого следует логичный вывод, что каждый организм имеет число генов, которые способны независимо комбинироваться в мейозе, но ограничены числом пар хромосом. Вследствие этого на каждую хромосому приходится далеко не по одному гену.

Хромосомы наследуются как единое целое. Они сохраняют свою целостность при конъюгации и расхождении в мейозе. Поэтому гены, содержащиеся в одной хромосоме, как правило, наследуются совместно.

Гены, которые локализованы в одной хромосоме и способны наследоваться совместно, составляют группу сцепления. А совместное наследование генов соответственно называется сцеплением генов.

У организмов определенного вида количество групп сцепления равно количеству хромосом в гаплоидном наборе.

Хромосомная теория наследственности

Впервые явление сцепленного наследования признаков было описано в $1906$ году В. Бетсоном и Р. Пеннетом в опытах, проводимых с душистым горошком. Но они не смогли объяснить результаты опытов и пришли к выводу об ограниченности правила независимого комбинирования признаков, установленного Г. Менделем.

Экспериментальными исследованиями явления сцепленного наследования успешно занимался выдающийся американский естествоиспытатель и генетик Томас Хант Морган. Он со своими ассистентами и сотрудниками А. Стервантом, Г. Миллером и К. Бриджесом провел основательные исследования. Результаты этих исследований позволили предложить и аргументированно обосновать хромосомную теорию наследственности .

Опыты Т. Х. Моргана

Для проведения исследований Т.Х.Морган избрал в качестве объекта муху-дрозофилу. С тех пор эта муха стала классическим объектом для различных генетических экспериментов. Их легко содержать, они быстро размножаются. А небольшое количество хромосом облегчает наблюдение.

Пример 1

Был проведен следующий опыт. Самцов дрозофилы, которые были гомозиготными по доминантным признакам окраски тела и формы крыльев (а именно - серое тело и нормальные крылья), ученые скрестили с самками, гомозиготными по рецессивным признакам (черное тело и недоразвитые крылья). Генотипы исследуемых особей обозначили соответственно ЕЕVV и ееvv . Всем гибридам первого поколения характерно было серое тело и нормальные крылья. Они были гетерозиготными. Их генотип можно было записать как EeVv . Затем провели анализирующее скрещивание. Для этого гибриды первого поколения скрестили с гомозиготами по рецессивным признакам. Теоретически можно было предположить, что произойдет расщепление признаков и пропорция полученных результатов будет выглядеть так: $1: 1: 1: 1$. Другими словами каждого варианта будет примерно по $25$%. На самом же деле $41,5$% особей имели серое тело и нормальные крылья, $41,5$% - черное тело и недоразвитые крылья, $8,5$% - серое тело и недоразвитые крылья, $8,5$% - черное тело и нормальные крылья. Результаты опытов позволили Моргану сформулировать два важных предположения.

  1. Гены, которые определяют цвет тела и форму крыльев локализованы в одной хромосоме и в дальнейшем наследуются сцеплено.
  2. В процессе мейоза и образования гамет гомологические хромосомы некоторых особей обменялись участками и образовали новую группу сцепления.

Явление кроссинговера

Определение 1

Явление перекреста хромосом во время мейоза и последующий обмен участками хромосом получил название кроссинговера .

Он увеличивает комбинативную изменчивость, способствую появлению новых сочетаний аллелей. Были установлены следующие закономерности кроссинговера:

  1. Сила сцепления между двумя генами, которые расположены в одной хромосоме, обратно пропорциональна расстоянию между ними.
  2. Частота кроссинговера, который происходит между двумя сцепленными генами, это относительно постоянная величина для каждой конкретной пары генов.

Главным выводом моргановской гипотезы было то, что гены расположены в хромосоме по всей ее длине один за другим в линейном порядке.